OFFSET
1,4
COMMENTS
Dirichlet convolution of A008472 with itself.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
FORMULA
Dirichlet g.f.: ( zeta(s) * primezeta(s-1) )^2.
a(p) = 0 for p prime. - Michael S. Branicky, Nov 26 2021
a(p^k) = (k-1)*p^2 for p prime and k > 0. - Chai Wah Wu, Nov 28 2021
MATHEMATICA
sopf[n_] := DivisorSum[n, # &, PrimeQ[#] &]; a[n_] := Sum[sopf[d] sopf[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}]
PROG
(PARI) sopf(n) = vecsum(factor(n)[, 1]); \\ A008472
a(n) = sumdiv(n, d, sopf(d)*sopf(n/d)); \\ Michel Marcus, Nov 26 2021
(Python)
from sympy import divisors, factorint
def sopf(n): return sum(factorint(n))
def a(n): return sum(sopf(d)*sopf(n//d) for d in divisors(n))
print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Nov 26 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 26 2021
STATUS
approved