login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318366
a(n) = Sum_{d|n} bigomega(d)*bigomega(n/d).
5
0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 8, 0, 2, 2, 10, 0, 8, 0, 8, 2, 2, 0, 20, 1, 2, 4, 8, 0, 12, 0, 20, 2, 2, 2, 24, 0, 2, 2, 20, 0, 12, 0, 8, 8, 2, 0, 40, 1, 8, 2, 8, 0, 20, 2, 20, 2, 2, 0, 34, 0, 2, 8, 35, 2, 12, 0, 8, 2, 12, 0, 52, 0, 2, 8, 8, 2, 12, 0, 40, 10, 2, 0, 34, 2, 2, 2, 20, 0, 34, 2, 8, 2, 2, 2
OFFSET
1,6
COMMENTS
Dirichlet convolution of A001222 with itself.
FORMULA
a(A025487(n)) = A322375(n). - David A. Corneth, Jan 12 2019
From Robert Israel, Jan 17 2019: (Start)
If x and y are coprime, a(x*y) = a(x)*A000005(y) + A000005(x)*a(y) + A000005(x*y)*A001222(x)*A001222(y).
If p is prime, a(p^k) = (k^3-k)/6 = A000292(k-1). (End)
EXAMPLE
24 has 8 divisors, namely 1, 2, 3, 4, 6, 8, 12, 24, and four prime factors counted with multiplicity. The divisors have 0, 1, 1, 2, 2, 3, 3, 4 divisors respectively. So a(24) = 0 * (4 - 0) + 1 * (4 - 1) + 1 * (4 - 1) + 2 * (4 - 2) + 2 * (4 - 2) + 3 * (4 - 3) + 4 * (4 - 4) = 0 + 3 + 3 + 4 + 4 + 3 + 3 + 0 = 20. - David A. Corneth, Jan 12 2019
MAPLE
f:= proc(n) local F, G, t, x;
F:= map(t -> t[2], ifactors(n)[2]);
G:= unapply(normal(mul((1-x^(t+1))/(1-x), t = F)), x);
(convert(F, `+`)-1)*D(G)(1) - (D@@2)(G)(1);
end proc:
map(f, [$1..100]); # Robert Israel, Jan 17 2019
MATHEMATICA
Table[Sum[PrimeOmega[d] PrimeOmega[n/d], {d, Divisors[n]}], {n, 95}]
PROG
(PARI) a(n) = sumdiv(n, d, bigomega(d)*bigomega(n/d)); \\ Michel Marcus, Aug 25 2018
(PARI) a(n) = bn = bigomega(n); sumdiv(n, d, bd = bigomega(d); bd * (bn - bd)) \\ David A. Corneth, Jan 12 2019
CROSSREFS
Cf. A000005, A001222, A008578 (positions of 0's), A069264, A070288, A112967, A317938, A322375.
Sequence in context: A154794 A177264 A326758 * A300252 A305796 A347961
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 24 2018
STATUS
approved