OFFSET
0,4
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A000240(k)*binomial(n-1,k-1)*a(n-k).
a(n) ~ exp(exp(-1)/2 - 1/4 + 2*exp(-1/2)*sqrt(n) - n) * n^(n - 1/4) / sqrt(2). - Vaclav Kotesovec, Aug 25 2018
MAPLE
seq(n!*coeff(series(exp(x*exp(-x)/(1-x)), x=0, 24), x, n), n=0..23); # Paolo P. Lava, Jan 09 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[x Exp[-x]/(1 - x)], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[k Subfactorial[k - 1] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
PROG
(PARI) x = 'x + O('x^25); Vec(serlaplace(exp(x*exp(-x)/(1 - x)))) \\ Michel Marcus, Aug 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 24 2018
STATUS
approved