login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347961
Dirichlet convolution of A342001 with itself.
5
0, 0, 0, 1, 0, 2, 0, 4, 1, 2, 0, 14, 0, 2, 2, 10, 0, 14, 0, 18, 2, 2, 0, 42, 1, 2, 4, 22, 0, 40, 0, 20, 2, 2, 2, 63, 0, 2, 2, 58, 0, 48, 0, 30, 20, 2, 0, 92, 1, 18, 2, 34, 0, 40, 2, 74, 2, 2, 0, 204, 0, 2, 24, 35, 2, 64, 0, 42, 2, 56, 0, 162, 0, 2, 20, 46, 2, 72, 0, 132, 10, 2, 0, 260, 2, 2, 2, 106, 0, 210, 2, 54, 2, 2, 2
OFFSET
1,6
FORMULA
a(n) = Sum_{d|n} A342001(d) * A342001(n/d).
From Vaclav Kotesovec, Mar 04 2023: (Start)
Let pr(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))
and su(s) = Sum_{primes p} p^s/((p^s - 1)*(p^s + p - 1)).
Sum_{k=1..n} a(k) ~ pr(2)^2 * su(2)^2 * Pi^4 * n^2 * log(n) / 72 *
(1 + (2*gamma - 1/2 + 2*pr'(2)/pr(2) + 2*su'(2)/su(2) + 12*zeta'(2)/Pi^2) / log(n)), where
pr(2) = A065464 = 0.428249505677094440218765707581823546121298513355936...
pr'(2) = pr(2) * Sum_{primes p} (3*p - 2) * log(p) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407...
su(2) = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2)) * PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384...
su'(2) = Sum_{primes p} p^2 * (1-p-p^4) * log(p) / ((p^2-1)^2 * (p^2+p-1)^2) = -0.486606220169261905698805096547122238460686354267440350206456696497...
and gamma is the Euler-Mascheroni constant A001620. (End)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A342001(n) = (A003415(n) / A003557(n));
A347961(n) = sumdiv(n, d, A342001(n/d)*A342001(d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 24 2021
STATUS
approved