login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of A342001 with itself.
5

%I #15 Dec 24 2024 07:26:20

%S 0,0,0,1,0,2,0,4,1,2,0,14,0,2,2,10,0,14,0,18,2,2,0,42,1,2,4,22,0,40,0,

%T 20,2,2,2,63,0,2,2,58,0,48,0,30,20,2,0,92,1,18,2,34,0,40,2,74,2,2,0,

%U 204,0,2,24,35,2,64,0,42,2,56,0,162,0,2,20,46,2,72,0,132,10,2,0,260,2,2,2,106,0,210,2,54,2,2,2

%N Dirichlet convolution of A342001 with itself.

%H Antti Karttunen, <a href="/A347961/b347961.txt">Table of n, a(n) for n = 1..10000</a>

%H Vaclav Kotesovec, <a href="/A347961/a347961.jpg">Graph - the asymptotic ratio (100000 terms)</a>

%F a(n) = Sum_{d|n} A342001(d) * A342001(n/d).

%F From _Vaclav Kotesovec_, Mar 04 2023: (Start)

%F Let pr(s) = Product_{primes p} (1 + p^(1-2*s) - p^(2-2*s) - p^(-s))

%F and su(s) = Sum_{primes p} p^s/((p^s - 1)*(p^s + p - 1)).

%F Sum_{k=1..n} a(k) ~ pr(2)^2 * su(2)^2 * Pi^4 * n^2 * log(n) / 72 *

%F (1 + (2*gamma - 1/2 + 2*pr'(2)/pr(2) + 2*su'(2)/su(2) + 12*zeta'(2)/Pi^2) / log(n)), where

%F pr(2) = A065464 = 0.428249505677094440218765707581823546121298513355936...

%F pr'(2) = pr(2) * Sum_{primes p} (3*p - 2) * log(p) / (p^3 - 2*p + 1) = 0.6293283828324697510445630056425352981207558777167836747744750359407...

%F su(2) = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2)) * PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384...

%F su'(2) = Sum_{primes p} p^2 * (1-p-p^4) * log(p) / ((p^2-1)^2 * (p^2+p-1)^2) = -0.486606220169261905698805096547122238460686354267440350206456696497...

%F and gamma is the Euler-Mascheroni constant A001620. (End)

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A003557(n) = (n/factorback(factorint(n)[, 1]));

%o A342001(n) = (A003415(n) / A003557(n));

%o A347961(n) = sumdiv(n,d,A342001(n/d)*A342001(d));

%Y Cf. A003415, A003557, A342001, A347962.

%Y Cf. also A305809, A347963.

%K nonn

%O 1,6

%A _Antti Karttunen_, Sep 24 2021