Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 28 2021 12:09:32
%S 0,0,0,4,0,12,0,16,9,20,0,44,0,28,30,40,0,54,0,68,42,44,0,104,25,52,
%T 36,92,0,124,0,80,66,68,70,147,0,76,78,152,0,164,0,140,108,92,0,200,
%U 49,110,102,164,0,144,110,200,114,116,0,298,0,124,144,140,130,244,0,212,138,236,0,300,0,148,140
%N a(n) = Sum_{d|n} sopfr(d) * sopfr(n/d).
%C Dirichlet convolution of A001414 with itself.
%H Antti Karttunen, <a href="/A349711/b349711.txt">Table of n, a(n) for n = 1..20000</a>
%F Dirichlet g.f.: ( zeta(s) * Sum_{p prime} p/(p^s-1) )^2.
%F a(p^k) = (k^3-k)*p^2/6 = A000292(k-1)*p^2 for p prime. - _Chai Wah Wu_, Nov 28 2021
%p b:= proc(n) option remember; add(i[1]*i[2], i=ifactors(n)[2]) end:
%p a:= n-> add(b(d)*b(n/d), d=numtheory[divisors](n)):
%p seq(a(n), n=1..75); # _Alois P. Heinz_, Nov 26 2021
%t sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger@n; a[n_] := Sum[sopfr[d] sopfr[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 75}]
%o (PARI) sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414
%o a(n) = sumdiv(n, d, sopfr(d)*sopfr(n/d)); \\ _Michel Marcus_, Nov 26 2021
%o (Python)
%o from itertools import product
%o from sympy import factorint
%o def A349711(n):
%o f = factorint(n)
%o plist, m = list(f.keys()), sum(f[p]*p for p in f)
%o return sum((lambda x: x*(m-x))(sum(d[i]*p for i, p in enumerate(plist))) for d in product(*(list(range(f[p]+1)) for p in plist))) # _Chai Wah Wu_, Nov 27 2021
%Y Cf. A000292, A001414, A034761, A318366, A349712.
%K nonn,look
%O 1,4
%A _Ilya Gutkovskiy_, Nov 26 2021