login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349272
a(n) = Product_{k = 1..2*n+1} Fibonacci(2*k) / Sum_{k = 1..2*n+1} Fibonacci(2*k).
1
1, 2, 315, 2471040, 918185538816, 16047302734562299200, 13178031727820369629763174400, 508406658175888466343652105865846784000, 921456090985190879093613420564815806955580862464000, 78458394721620642094151397745899367347021362840662985785265356800
OFFSET
0,2
COMMENTS
Let m be an even positive integer. We conjecture that the sequence defined by b_m(n) = Product_{k = 1..2*n+1} Fibonacci(m*k) / Sum_{k = 1..2*n+1} Fibonacci(m*k) is integral. The formula given below proves the conjecture in the present case m = 2. The cases m = 4 and m = 6 of the conjecture can be proved in a similar manner.
More generally, if F(n,x) denotes the n-th Fibonacci polynomial we conjecture that, for each n, the rational function Product_{k = 1..2*n+1} F(m*k,x) / Sum_{k = 1..2*n+1} F(m*k,x) is an integral polynomial.
FORMULA
a(n) = F(2*n+1)/F(2*n+2) * Product_{k = 1..2*n} Fibonacci(2*k), shows a(n) to be integral. Cf. A159951.
a(n) ~ A194159 * phi^(4*n^2 + 2*n - 1) / 5^n, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 31 2023
MAPLE
with(combinat):
seq(mul(fibonacci(2*k), k = 1..2*n+1)/add(fibonacci(2*k), k = 1..2*n+1), n = 0..10);
MATHEMATICA
Table[Product[ Fibonacci[2k], {k, 2n+1}]/Sum[Fibonacci[2k], {k, 2n+1}], {n, 0, 9}] (* Stefano Spezia, Nov 13 2021 *)
PROG
(PARI) a(n) = prod(k = 1, 2*n+1, fibonacci(2*k)) / sum(k = 1, 2*n+1, fibonacci(2*k)); \\ Michel Marcus, Nov 12 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 12 2021
STATUS
approved