login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{k = 1..2*n+1} Fibonacci(2*k) / Sum_{k = 1..2*n+1} Fibonacci(2*k).
1

%I #13 Aug 31 2023 06:38:21

%S 1,2,315,2471040,918185538816,16047302734562299200,

%T 13178031727820369629763174400,

%U 508406658175888466343652105865846784000,921456090985190879093613420564815806955580862464000,78458394721620642094151397745899367347021362840662985785265356800

%N a(n) = Product_{k = 1..2*n+1} Fibonacci(2*k) / Sum_{k = 1..2*n+1} Fibonacci(2*k).

%C Let m be an even positive integer. We conjecture that the sequence defined by b_m(n) = Product_{k = 1..2*n+1} Fibonacci(m*k) / Sum_{k = 1..2*n+1} Fibonacci(m*k) is integral. The formula given below proves the conjecture in the present case m = 2. The cases m = 4 and m = 6 of the conjecture can be proved in a similar manner.

%C More generally, if F(n,x) denotes the n-th Fibonacci polynomial we conjecture that, for each n, the rational function Product_{k = 1..2*n+1} F(m*k,x) / Sum_{k = 1..2*n+1} F(m*k,x) is an integral polynomial.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Fibonacci_polynomials">Fibonacci polynomials</a>

%F a(n) = F(2*n+1)/F(2*n+2) * Product_{k = 1..2*n} Fibonacci(2*k), shows a(n) to be integral. Cf. A159951.

%F a(n) ~ A194159 * phi^(4*n^2 + 2*n - 1) / 5^n, where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Aug 31 2023

%p with(combinat):

%p seq(mul(fibonacci(2*k), k = 1..2*n+1)/add(fibonacci(2*k), k = 1..2*n+1), n = 0..10);

%t Table[Product[ Fibonacci[2k],{k,2n+1}]/Sum[Fibonacci[2k],{k,2n+1}],{n,0,9}] (* _Stefano Spezia_, Nov 13 2021 *)

%o (PARI) a(n) = prod(k = 1, 2*n+1, fibonacci(2*k)) / sum(k = 1, 2*n+1, fibonacci(2*k)); \\ _Michel Marcus_, Nov 12 2021

%Y Cf. A000045, A159951, A175553.

%Y Cf. A003266, A194157.

%K nonn,easy

%O 0,2

%A _Peter Bala_, Nov 12 2021