login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175553
Product of first k triangular numbers divided by the sum of first k triangular numbers is an integer.
6
1, 4, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 66, 67, 68, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 96
OFFSET
1,2
COMMENTS
Numbers k such that (1*3*6*10* ... *(k*(k+1)/2)) / (1+3+6+10+ ... +(k*(k+1)/2)) is an integer. What if, instead of triangular numbers, we use squares, 1*4*...*(k*k) / (1+4+...+k*k); odd numbers, 1*3*...*(2*k-1) / (1+3+...+(2*k-1)); or Fibonacci numbers, F(1)* ... *F(k) / (F(1)+ ... + F(k))?
It appears that the corresponding sequence for the Fibonacci numbers is given in A133653. - John W. Layman, Jul 10 2010
k > 6 is in this sequence if and only if k+2 is composite. - Robert Israel, Nov 04 2021
LINKS
FORMULA
{k: A006472(k+1)/A000292(k) in Z}. - R. J. Mathar, Jun 28 2010
EXAMPLE
For k=4 we have 1*3*6*10 /(1+3+6+10) = 9 so k=4 belongs to the sequence.
MAPLE
A006472 := proc(n) n!*(n-1)!/2^(n-1) ; end proc:
A000292 := proc(n) binomial(n+2, 3) ; end proc:
for n from 1 to 200 do a := A006472(n+1)/A000292(n) ; if type(a, 'integer') then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Jun 28 2010
MATHEMATICA
fQ[n_] := Mod[6n!(n - 1)!, (n + 2)2^n ] == 0; Select[Range@ 96, fQ@# &] (* Robert G. Wilson v, Jun 29 2010 *)
CROSSREFS
Cf. A133653. - John W. Layman, Jul 10 2010
Sequence in context: A283767 A174142 A091158 * A284684 A175008 A336408
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Jun 26 2010
EXTENSIONS
More terms from R. J. Mathar and Robert G. Wilson v, Jun 28 2010
STATUS
approved