OFFSET
1,2
COMMENTS
Numbers k such that (1*3*6*10* ... *(k*(k+1)/2)) / (1+3+6+10+ ... +(k*(k+1)/2)) is an integer. What if, instead of triangular numbers, we use squares, 1*4*...*(k*k) / (1+4+...+k*k); odd numbers, 1*3*...*(2*k-1) / (1+3+...+(2*k-1)); or Fibonacci numbers, F(1)* ... *F(k) / (F(1)+ ... + F(k))?
It appears that the corresponding sequence for the Fibonacci numbers is given in A133653. - John W. Layman, Jul 10 2010
k > 6 is in this sequence if and only if k+2 is composite. - Robert Israel, Nov 04 2021
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
For k=4 we have 1*3*6*10 /(1+3+6+10) = 9 so k=4 belongs to the sequence.
MAPLE
A006472 := proc(n) n!*(n-1)!/2^(n-1) ; end proc:
A000292 := proc(n) binomial(n+2, 3) ; end proc:
for n from 1 to 200 do a := A006472(n+1)/A000292(n) ; if type(a, 'integer') then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Jun 28 2010
MATHEMATICA
fQ[n_] := Mod[6n!(n - 1)!, (n + 2)2^n ] == 0; Select[Range@ 96, fQ@# &] (* Robert G. Wilson v, Jun 29 2010 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Jun 26 2010
EXTENSIONS
More terms from R. J. Mathar and Robert G. Wilson v, Jun 28 2010
STATUS
approved