

A336408


a(n) = number of composites c+d such that c is a composite and d is the nth odd composite.


3



1, 4, 7, 8, 10, 13, 15, 17, 20, 22, 24, 24, 26, 31, 33, 35, 38, 40, 43, 44, 46, 47, 49, 52, 53, 58, 63, 63, 64, 66, 66, 68, 71, 73, 75, 77, 79, 80, 82, 84, 89, 91, 91, 94, 98, 99, 102, 103, 105, 109, 110, 111, 114, 117, 120, 122, 123, 125, 128, 129, 131, 131
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The nth odd composite is A014076(n+1); the nth composite is A002808(n).


LINKS



EXAMPLE

a(1) counts this sum: 6+9.
a(2) counts these sums: 6+15, 9+15, 10+15, 12+15.
a(3) counts these: 4+21, 6+21, 9+21, 12+21, 14+21, 15+21, 18+21.


MATHEMATICA

z = 400; p = Prime[Range[z]];
c = Select[Range[2, z], ! PrimeQ@# &]; (* A002808 *)
d = Select[Range[2, z], ! PrimeQ@# && OddQ@# &]; (* A014076 *)
f[n_] := Select[c, # < d[[n]] &];
g[n_] := d[[n]] + Select[c, # < d[[n]] &];
q[n_] := Length[Intersection[p, g[n]]];
tq = Table[q[n], {n, 1, 120}] (* A336406 *)
tc = Table[Length[f[n]], {n, 1, 120}] (* A336407 *)
m = Min[Length[tq], Length[tc]]; Take[tc, m]  Take[tq, m] (* A336408 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



