The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159951 Fibonacci integral quotients associated with the dividends in A159950 and the divisors in A003481 1
 12, 856800, 139890541190400, 50664770469826998541056000, 40527253814267058837705250384270510080000, 71554565901386985191123530075861409411081105273676595200000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The first example of an integral quotient in the Fibonacci sequence is 12 because 240/20=12. 240 is the product of terms through 8, and 20 the sum. Thereafter, with every other additional pair of terms in the Fibonacci sequence, another integral quotient occurs. LINKS EXAMPLE The first three integral quotients occur in the Fibonacci sequence as illustrated in the table following: 1 1 2 3 -- 6/7=.85+ 5 8 -- 240/20=12 Integral 13 21 -- 65520/54=1213.33+ 34 55 -- 122522400/143=856800 Integral 89 144 -- 1570247078400/376=4176189038.29+ 233 377 -- 137932073613734400/986=139890541190400 Integral etc. PROG (UBASIC) 10 'Fibo 20 'R=SUM:S=PRODUCT 30 'T integral every other pair 40 A=1:S=1:print A; :S=S*1 50 B=1:print B; :S=S*B 60 C=A+B:print C; :R=R+C:S=S*C 70 D=B+C:print D; :R=R+D:R=R+2:print R:S=S*D:print S 80 T=S/R:if T=int(S/R) then print T:stop 90 A=C:B=D:R=R-2:goto 60 CROSSREFS Sequence in context: A013796 A055312 A296138 * A283627 A013862 A116233 Adjacent sequences:  A159948 A159949 A159950 * A159952 A159953 A159954 KEYWORD easy,nonn AUTHOR Enoch Haga, Apr 27 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 09:32 EDT 2021. Contains 347714 sequences. (Running on oeis4.)