login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159949 Numerator of Hermite(n, 1/24). 1
1, 1, -287, -863, 247105, 1241281, -354589919, -2499523487, 712353753217, 6471255867265, -1839949672471199, -20477166570194399, 5808483395818564033, 76577571062410406977, -21670384262882293332575, -330431150786521054263839, 93285628864864986142460161 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..428

FORMULA

From G. C. Greubel, Jul 16 2018: (Start)

a(n) = 12^n * Hermite(n, 1/24).

E.g.f.: exp(x - 144*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/12)^(n-2*k)/(k!*(n-2*k)!)). (End)

EXAMPLE

Numerators of 1, 1/12, -287/144, -863/1728, 247105/20736, ...

MATHEMATICA

Numerator[HermiteH[Range[0, 20], 1/24]] (* Harvey P. Dale, Nov 05 2016 *)

Table[12^n*HermiteH[n, 1/12], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 1/24)) \\ Charles R Greathouse IV, Jan 29 2016

(PARI) x='x+O('x^30); Vec(serlaplace(exp(x - 144*x^2))) \\ G. C. Greubel, Jul 16 2018

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(1/12)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018

CROSSREFS

Cf. A001021 (denominators).

Sequence in context: A259402 A157997 A063362 * A158252 A236869 A158287

Adjacent sequences:  A159946 A159947 A159948 * A159950 A159951 A159952

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 13:34 EDT 2020. Contains 335663 sequences. (Running on oeis4.)