login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159949
Numerator of Hermite(n, 1/24).
1
1, 1, -287, -863, 247105, 1241281, -354589919, -2499523487, 712353753217, 6471255867265, -1839949672471199, -20477166570194399, 5808483395818564033, 76577571062410406977, -21670384262882293332575, -330431150786521054263839, 93285628864864986142460161
OFFSET
0,3
LINKS
FORMULA
From G. C. Greubel, Jul 16 2018: (Start)
a(n) = 12^n * Hermite(n, 1/24).
E.g.f.: exp(x - 144*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/12)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 1/12, -287/144, -863/1728, 247105/20736, ...
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 1/24]] (* Harvey P. Dale, Nov 05 2016 *)
Table[12^n*HermiteH[n, 1/12], {n, 0, 30}] (* G. C. Greubel, Jul 16 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/24)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(x - 144*x^2))) \\ G. C. Greubel, Jul 16 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/12)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 16 2018
CROSSREFS
Cf. A001021 (denominators).
Sequence in context: A259402 A157997 A063362 * A158252 A236869 A158287
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved