OFFSET
1,2
COMMENTS
These are real {0,1} matrices A such that A^2 = J, the all-ones matrix.
It is known that A must have dimension which is a square, so the sequence shows counts for 1 X 1, 4 X 4, 9 X 9, 16 X 16 matrices and so on.
It is also known that if A has dimension n^2 X n^2, then each row and column must contain exactly n 1's, and A has trace n.
a(3) = 1330560 is confirmed by W. Edwin Clark, Mar 12 2017, who says: (Start)
My method was to take the 6 matrices A1, A2, A3, A4, A5, A6 found by Knuth, which are representatives for the 6 distinct orbits of 9 x 9 matrices A such that A^2 = J under the action of the 9! permutation matrices acting by conjugation.
I found for each Ai the size n_i of the stabilizer of Ai. The stabilizer orders are [n_1,n_2,n_3,n_4,n_5,n_6] = [6,2,1,1,2,2], which implies that the cardinality of the union of all orbits is Sum(9!/n_i, i=1..6) = 1330560.
(End)
LINKS
F. Curtis, J. Drew, Central groupoids, central digraphs, and zero-one matrices A satisfying A^2=J, (2002).
F. Curtis, J. Drew, C-K Li, D. Pragel, Central groupoids, central digraphs, and zero-one matrices A satisfying A^2=J, J. Combin. Theo. A (105) (2004) 35-50.
J. Knuth, Notes on Central Groupoids, J. Combin. Theo. 8 (1970) 376-390.
Donald E. Knuth and Peter B. Bendix, Simple word problems in universal algebras, in John Leech (ed.), Computational Problems in Abstract Algebra, Pergamon, 1970, pp. 263-297.
H. Ryser, A generalization of the matrix equation A^2=J, Lin. Algebra Applic. 3 (4) (1970) 451-460.
Y.-K. Wu, R.-Z. Jia, Q. Li, g-circulant solutions to the (0,1) matrix equation A^m=J_n, Lin. Alg. Applic. 345 (1-3) (2002) 195-224.
EXAMPLE
Four of the 12 solutions for 4 X 4 are
1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1
.
1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0
.
1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0
.
0 1 0 1
1 0 1 0
1 0 1 0
0 1 0 1
.
Solutions for 9 X 9 are, for example,
1 1 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 1 1
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 1 1
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 1 1
.
1 1 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 1 1
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 1 1
0 0 0 1 0 0 0 1 1
0 0 0 0 1 1 1 0 0
.
1 1 1 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 0 1 1
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 1
0 0 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0 1
0 0 0 0 1 0 1 1 0
CROSSREFS
KEYWORD
nonn,bref,more
AUTHOR
R. J. Mathar, Mar 12 2017
EXTENSIONS
Edited by N. J. A. Sloane, Mar 12 2017
STATUS
approved