login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283624
Number of {0,1} n X n matrices with no rows or columns in which all entries are the same.
2
1, 0, 2, 102, 22874, 17633670, 46959933962, 451575174961302, 16271255119687320314, 2253375946574190518740230, 1219041140314101911449662059402, 2601922592659455476330065914740044182, 22040870572750372076278589658097827953983034
OFFSET
0,3
COMMENTS
Every row and column must contain both a 0 and a 1 .
a(n) is the number of relations on n labeled points such that for every point x there exists y,z,t,u such that xRy, zRx, not(xRt), and not(uRx).
FORMULA
a(n) = 2*Sum_{k=0..n} ((-1)^(n+k)*binomial(n,k)*(2^k-1)^n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n.
a(n) = 2*A048291(n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n.
EXAMPLE
For n=2 the a(2)=2 matrices are
0 1
1 0
and
1 0
0 1
MAPLE
seq(2*sum((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n)+2^(n^2)+2*(2^n-2)^n-4*(2^n-1)^n, n=0..10)
MATHEMATICA
Table[If[n==0, 1, 2 Sum[(-1)^(n + k) * Binomial[n, k] * (2^k - 1)^n, {k, 0, n}] + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n], {n, 0, 12}] (* Indranil Ghosh, Mar 12 2017 *)
PROG
(PARI) for(n=0, 12, print1(2*sum(k=0, n, (-1)^(n + k) * binomial(n, k) * (2^k - 1)^n) + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n, ", ")) \\ Indranil Ghosh, Mar 12 2017
(Python)
import math
f = math.factorial
def C(n, r): return f(n)/f(r)/f(n - r)
def A(n):
....s=0
....for k in range(0, n+1):
........s+=(-1)**(n + k) * C(n, k) * (2**k -1)**n
....return 2*s + 2**(n**2) + 2*(2**n - 2)**n - 4*(2**n - 1)**n # Indranil Ghosh, Mar 12 2017
CROSSREFS
Cf. A048291.
Diagonal of A283654.
Sequence in context: A256516 A157066 A202740 * A055693 A357767 A215964
KEYWORD
nonn
AUTHOR
Robert FERREOL, Mar 12 2017
EXTENSIONS
a(11)-a(12) from Indranil Ghosh, Mar 12 2017
STATUS
approved