OFFSET
0,3
COMMENTS
Every row and column must contain both a 0 and a 1 .
a(n) is the number of relations on n labeled points such that for every point x there exists y,z,t,u such that xRy, zRx, not(xRt), and not(uRx).
FORMULA
a(n) = 2*Sum_{k=0..n} ((-1)^(n+k)*binomial(n,k)*(2^k-1)^n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n.
a(n) = 2*A048291(n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n.
EXAMPLE
For n=2 the a(2)=2 matrices are
0 1
1 0
and
1 0
0 1
MAPLE
seq(2*sum((-1)^(n+k)*binomial(n, k)*(2^k-1)^n, k=0..n)+2^(n^2)+2*(2^n-2)^n-4*(2^n-1)^n, n=0..10)
MATHEMATICA
Table[If[n==0, 1, 2 Sum[(-1)^(n + k) * Binomial[n, k] * (2^k - 1)^n, {k, 0, n}] + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n], {n, 0, 12}] (* Indranil Ghosh, Mar 12 2017 *)
PROG
(PARI) for(n=0, 12, print1(2*sum(k=0, n, (-1)^(n + k) * binomial(n, k) * (2^k - 1)^n) + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n, ", ")) \\ Indranil Ghosh, Mar 12 2017
(Python)
import math
f = math.factorial
def C(n, r): return f(n)/f(r)/f(n - r)
def A(n):
....s=0
....for k in range(0, n+1):
........s+=(-1)**(n + k) * C(n, k) * (2**k -1)**n
....return 2*s + 2**(n**2) + 2*(2**n - 2)**n - 4*(2**n - 1)**n # Indranil Ghosh, Mar 12 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert FERREOL, Mar 12 2017
EXTENSIONS
a(11)-a(12) from Indranil Ghosh, Mar 12 2017
STATUS
approved