Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Mar 26 2017 13:54:32
%S 1,0,2,102,22874,17633670,46959933962,451575174961302,
%T 16271255119687320314,2253375946574190518740230,
%U 1219041140314101911449662059402,2601922592659455476330065914740044182,22040870572750372076278589658097827953983034
%N Number of {0,1} n X n matrices with no rows or columns in which all entries are the same.
%C Every row and column must contain both a 0 and a 1 .
%C a(n) is the number of relations on n labeled points such that for every point x there exists y,z,t,u such that xRy, zRx, not(xRt), and not(uRx).
%F a(n) = 2*Sum_{k=0..n} ((-1)^(n+k)*binomial(n,k)*(2^k-1)^n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n.
%F a(n) = 2*A048291(n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n.
%e For n=2 the a(2)=2 matrices are
%e 0 1
%e 1 0
%e and
%e 1 0
%e 0 1
%p seq(2*sum((-1)^(n+k)*binomial(n,k)*(2^k-1)^n,k=0..n)+2^(n^2)+2*(2^n-2)^n-4*(2^n-1)^n,n=0..10)
%t Table[If[n==0, 1, 2 Sum[(-1)^(n + k) * Binomial[n, k] * (2^k - 1)^n, {k, 0,n}] + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n], {n, 0, 12}] (* _Indranil Ghosh_, Mar 12 2017 *)
%o (PARI) for(n=0, 12, print1(2*sum(k=0, n, (-1)^(n + k) * binomial(n, k) * (2^k - 1)^n) + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n,", ")) \\ _Indranil Ghosh_, Mar 12 2017
%o (Python)
%o import math
%o f = math.factorial
%o def C(n,r): return f(n)/f(r)/f(n - r)
%o def A(n):
%o ....s=0
%o ....for k in range(0, n+1):
%o ........s+=(-1)**(n + k) * C(n, k) * (2**k -1)**n
%o ....return 2*s + 2**(n**2) + 2*(2**n - 2)**n - 4*(2**n - 1)**n # _Indranil Ghosh_, Mar 12 2017
%Y Cf. A048291.
%Y Diagonal of A283654.
%K nonn
%O 0,3
%A _Robert FERREOL_, Mar 12 2017
%E a(11)-a(12) from _Indranil Ghosh_, Mar 12 2017