login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157066
Number of integer sequences of length n+1 with sum zero and sum of absolute values 34.
1
2, 102, 2892, 57460, 882030, 11053434, 117206264, 1078467624, 8774904690, 64062783510, 424600608564, 2579499722124, 14479567043214, 75613799423610, 369504358622640, 1698353774374704, 7375213677918294, 30379740299612514, 119122913376492980, 446056011713374860
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (35,-595,6545,-52360,324632,-1623160,6724520, -23535820,70607460,-183579396,417225900,-834451800,1476337800,-2319959400, 3247943160,-4059928950,4537567650,-4537567650,4059928950,-3247943160,2319959400, -1476337800,834451800,-417225900,183579396,-70607460,23535820,-6724520,1623160, -324632,52360,-6545,595,-35,1).
FORMULA
a(n) = T(n,17); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+16, 17)*Hypergeometric3F2([-16, -n, 1-n], [2, -n-16], 1).
a(n) = (2333606220/34!)*n*(n+1)*(7441973323855715893248000000 + 18155084795637437929881600000*n + 30268626521952180908851200000*n^2 + 27504128369891325149577216000*n^3 + 22380511931408981359868313600*n^4 + 11606451235232148856801198080*n^5 + 6053325843616709826370609152*n^6 + 2071495721724703057714876416*n^7 + 776772176331488107582976256*n^8 + 188575401978015909077544960*n^9 + 54249004662342491124700928*n^10 + 9739700938346246478267904*n^11 + 2242198636428402181902944*n^12 + 305221374822225945324800*n^13 + 57932851765719841948880*n^14 + 6064778909442097812240*n^15 + 970512936702416581665*n^16 + 78610569988240809600*n^17 + 10791805239981923160*n^18 + 675564468731071680*n^19 + 80680394732550780*n^20 + 3869168748681600*n^21 + 406620563860680*n^22 + 14666674470240*n^23 + 1369455578790*n^24 + 35960795520*n^25 + 3007754088*n^26 + 54285504*n^27 + 4095964*n^28 + 45440*n^29 + 3112*n^30 + 16*n^31 + n^32).
G.f.: 2*x*(1 + 16*x + 256*x^2 + 1920*x^3 + 14400*x^4 + 67200*x^5 + 313600*x^6 + 1019200*x^7 + 3312400*x^8 + 7949760*x^9 + 19079424*x^10 + 34978944*x^11 + 64128064*x^12 + 91611520*x^13 + 130873600*x^14 + 147232800*x^15 + 165636900*x^16 + 147232800*x^17 + 130873600*x^18 + 91611520*x^19 + 64128064*x^20 + 34978944*x^21 + 19079424*x^22 + 7949760*x^23 + 3312400*x^24 + 1019200*x^25 + 313600*x^26 + 67200*x^27 + 14400*x^28 + 1920*x^29 + 256*x^30 + 16*x^31 + x^32)/(1-x)^35. (End)
MATHEMATICA
A103881[n_, k_]:= (n+1)*Binomial[n+k-1, k]*HypergeometricPFQ[{1-n, -n, 1-k}, {2, 1-n - k}, 1];
A157066[n_]:= A103881[n, 17];
Table[A157066[n], {n, 50}] (* G. C. Greubel, Jan 25 2022 *)
PROG
(Sage)
def A103881(n, k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) )
def A157066(n): return A103881(n, 17)
[A157066(n) for n in (1..50)] # G. C. Greubel, Jan 25 2022
CROSSREFS
Sequence in context: A173640 A111012 A256516 * A202740 A283624 A055693
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 22 2009
STATUS
approved