login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348973
Numerator of ratio A129283(n) / A003959(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.
4
1, 1, 1, 8, 1, 11, 1, 20, 15, 17, 1, 7, 1, 23, 23, 16, 1, 13, 1, 22, 31, 35, 1, 17, 35, 41, 27, 5, 1, 61, 1, 112, 47, 53, 47, 2, 1, 59, 55, 2, 1, 83, 1, 23, 7, 71, 1, 40, 63, 95, 71, 6, 1, 45, 71, 37, 79, 89, 1, 19, 1, 95, 57, 256, 83, 127, 1, 70, 95, 43, 1, 19, 1, 113, 65, 13, 95, 149, 1, 128, 189, 125, 1, 13, 107
OFFSET
1,4
COMMENTS
It is known that A129283(n) <= A003959(n) for all n (see A348970 for a proof), which implies that each ratio a(n)/A348974(n) is at most 1: 1/1, 1/1, 1/1, 8/9, 1/1, 11/12, 1/1, 20/27, 15/16, 17/18, 1/1, 7/9, 1/1, 23/24, 23/24, 16/27, 1/1, 13/16, 1/1, 22/27, 31/32, 35/36, 1/1, 17/27, 35/36, 41/42, 27/32, 5/6, 1/1, 61/72, 1/1, 112/243, etc.
LINKS
FORMULA
a(n) = A129283(n) / A348972(n) = A129283(n) / gcd(A003959(n), A129283(n)).
MATHEMATICA
f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[n_] := Numerator[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n]))/Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A348973(n) = { my(u=n+A003415(n)); (u/gcd(A003959(n), u)); };
CROSSREFS
Cf. A003415, A003959, A129283, A348970, A348972, A348974 (denominators).
Cf. also A345059.
Sequence in context: A302152 A160925 A345059 * A099614 A032012 A092702
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Nov 06 2021
STATUS
approved