login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032012
Number of ways to partition n labeled elements into sets of different odd sizes and order the sets.
1
1, 1, 0, 1, 8, 1, 12, 1, 128, 3025, 260, 7921, 2048, 78937, 4760, 2375101, 138411008, 9837697, 588189972, 96605425, 7353141248, 1752111145, 151280741480, 9294316285, 12191175684608, 1413604888888801, 75955683963432, 9022098736088101, 1170150933402368
OFFSET
0,5
LINKS
C. G. Bower, Transforms (2)
FORMULA
"AGJ" (ordered, elements, labeled) transform of 1, 0, 1, 0, ...(odds).
MAPLE
b:= proc(n, i, p) option remember;
`if`(n=0, p!, `if`(i<1, 0, b(n, i-2, p)+
`if`(i>n, 0, b(n-i, i-2, p+1)*binomial(n, i))))
end:
a:= n-> b(n, n-1+irem(n, 2), 0):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, b[n, i-2, p] + If[i>n, 0, b[n-i, i-2, p+1]*Binomial[n, i]]]]; a[n_] := b[n, n-1+Mod[n, 2], 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
PROG
(PARI) seq(n)=[subst(serlaplace(y^0*p), y, 1) | p <- Vec(serlaplace(prod(k=1, ceil(n/2), 1 + x^(2*k-1)*y/(2*k-1)! + O(x*x^n))))] \\ Andrew Howroyd, Sep 13 2018
CROSSREFS
Sequence in context: A345059 A348973 A099614 * A092702 A070475 A045771
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, May 11 2016
STATUS
approved