This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032012 Number of ways to partition n labeled elements into sets of different odd sizes and order the sets. 1
 1, 1, 0, 1, 8, 1, 12, 1, 128, 3025, 260, 7921, 2048, 78937, 4760, 2375101, 138411008, 9837697, 588189972, 96605425, 7353141248, 1752111145, 151280741480, 9294316285, 12191175684608, 1413604888888801, 75955683963432, 9022098736088101, 1170150933402368 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..742 C. G. Bower, Transforms (2) FORMULA "AGJ" (ordered, elements, labeled) transform of 1, 0, 1, 0, ...(odds). MAPLE b:= proc(n, i, p) option remember;       `if`(n=0, p!, `if`(i<1, 0, b(n, i-2, p)+       `if`(i>n, 0, b(n-i, i-2, p+1)*binomial(n, i))))     end: a:= n-> b(n, n-1+irem(n, 2), 0): seq(a(n), n=0..30); MATHEMATICA b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, b[n, i-2, p] + If[i>n, 0, b[n-i, i-2, p+1]*Binomial[n, i]]]]; a[n_] := b[n, n-1+Mod[n, 2], 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *) PROG (PARI) seq(n)=[subst(serlaplace(y^0*p), y, 1) | p <- Vec(serlaplace(prod(k=1, ceil(n/2), 1 + x^(2*k-1)*y/(2*k-1)! + O(x*x^n))))] \\ Andrew Howroyd, Sep 13 2018 CROSSREFS Sequence in context: A302152 A160925 A099614 * A092702 A070475 A045771 Adjacent sequences:  A032009 A032010 A032011 * A032013 A032014 A032015 KEYWORD nonn AUTHOR EXTENSIONS a(0)=1 prepended by Alois P. Heinz, May 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 05:17 EDT 2018. Contains 316304 sequences. (Running on oeis4.)