login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032013
Number of ways to partition n labeled elements into sets of different sizes of at least 2 and order the sets.
1
1, 0, 1, 1, 1, 21, 31, 113, 169, 8053, 15871, 71325, 300147, 816401, 63105953, 161203747, 856049593, 4050514725, 25570388671, 80377109117, 12126315199099, 36747628912981, 233849676829957, 1239662165799711, 8321234529548651, 59953576690379081
OFFSET
0,6
LINKS
C. G. Bower, Transforms (2)
FORMULA
"AGJ" (ordered, elements, labeled) transform of 0, 1, 1, 1...
MAPLE
b:= proc(n, i, p) option remember;
`if`(n=0, p!, `if`(i<2, 0, b(n, i-1, p)+
`if`(i>n, 0, b(n-i, i-1, p+1)*binomial(n, i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 2, 0, b[n, i - 1, p] + If[i > n, 0, b[n - i, i - 1, p + 1]*Binomial[n, i]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 27 2017, after Alois P. Heinz *)
PROG
(PARI) seq(n)=[subst(serlaplace(y^0*p), y, 1) | p <- Vec(serlaplace(prod(k=2, n, 1 + x^k*y/k! + O(x*x^n))))] \\ Andrew Howroyd, Sep 13 2018
CROSSREFS
Cf. A032011.
Sequence in context: A104297 A106324 A208293 * A324489 A256824 A176558
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, May 11 2016
STATUS
approved