Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 May 02 2022 17:28:36
%S 1,1,1,8,1,11,1,20,15,17,1,7,1,23,23,16,1,13,1,22,31,35,1,17,35,41,27,
%T 5,1,61,1,112,47,53,47,2,1,59,55,2,1,83,1,23,7,71,1,40,63,95,71,6,1,
%U 45,71,37,79,89,1,19,1,95,57,256,83,127,1,70,95,43,1,19,1,113,65,13,95,149,1,128,189,125,1,13,107
%N Numerator of ratio A129283(n) / A003959(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.
%C It is known that A129283(n) <= A003959(n) for all n (see A348970 for a proof), which implies that each ratio a(n)/A348974(n) is at most 1: 1/1, 1/1, 1/1, 8/9, 1/1, 11/12, 1/1, 20/27, 15/16, 17/18, 1/1, 7/9, 1/1, 23/24, 23/24, 16/27, 1/1, 13/16, 1/1, 22/27, 31/32, 35/36, 1/1, 17/27, 35/36, 41/42, 27/32, 5/6, 1/1, 61/72, 1/1, 112/243, etc.
%H Antti Karttunen, <a href="/A348973/b348973.txt">Table of n, a(n) for n = 1..20000</a>
%F a(n) = A129283(n) / A348972(n) = A129283(n) / gcd(A003959(n), A129283(n)).
%t f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[n_] := Numerator[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n]))/Times @@ f2 @@@ f]; Array[a, 100] (* _Amiram Eldar_, Nov 06 2021 *)
%o (PARI)
%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
%o A348973(n) = { my(u=n+A003415(n)); (u/gcd(A003959(n),u)); };
%Y Cf. A003415, A003959, A129283, A348970, A348972, A348974 (denominators).
%Y Cf. also A345059.
%K nonn,frac
%O 1,4
%A _Antti Karttunen_, Nov 06 2021