login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348971
a(n) = Product(p*(p+1)^(e-1)) - Product((p-1)*p^(e-1)), when n = Product(p^e), with p primes, and e their exponents.
5
0, 1, 1, 4, 1, 4, 1, 14, 6, 6, 1, 14, 1, 8, 7, 46, 1, 18, 1, 22, 9, 12, 1, 46, 10, 14, 30, 30, 1, 22, 1, 146, 13, 18, 11, 60, 1, 20, 15, 74, 1, 30, 1, 46, 36, 24, 1, 146, 14, 40, 19, 54, 1, 78, 15, 102, 21, 30, 1, 74, 1, 32, 48, 454, 17, 46, 1, 70, 25, 46, 1, 192, 1, 38, 50, 78, 17, 54, 1, 238, 138, 42, 1, 102, 21
OFFSET
1,4
COMMENTS
Möbius transform of A348507.
LINKS
FORMULA
a(n) = A003968(n) - A000010(n).
a(n) = Sum_{d|n} A008683(n/d) * A348507(d).
Sum_{k=1..n} a(k) ~ c * n^2, where c = A104141 * (1/A005596 - 1) = 0.5088692487... . - Amiram Eldar, Oct 05 2023
MATHEMATICA
f1[p_, e_] := p*(p + 1)^(e - 1); f2[p_, e_] := (p - 1)*p^(e - 1); a[1] = 0; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
PROG
(PARI) A348971(n) = { my(f=factor(n), m1=1, m2=1, p); for(i=1, #f~, p = f[i, 1]; m1 *= p*(p+1)^(f[i, 2]-1); m2 *= (p-1)*p^(f[i, 2]-1)); (m1-m2); };
(PARI) A348971(n) = { my(f=factor(n), p); for (i=1, #f~, p = f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f)-eulerphi(n); }
KEYWORD
nonn,easy,look
AUTHOR
Antti Karttunen, Nov 05 2021
STATUS
approved