login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156896
Triangle formed by coefficients of the expansion of p(x, n), where p(x,n) = (1+x-x^3)^(n+1)*Sum_{j >= 0} (j+1)^n*(-x + x^3)^j.
5
1, 1, 1, -1, 0, 1, 1, -4, 1, 4, -2, 0, 1, 1, -11, 11, 10, -22, 3, 11, -3, 0, 1, 1, -26, 66, 0, -131, 78, 62, -78, 6, 26, -4, 0, 1, 1, -57, 302, -245, -547, 905, 74, -901, 342, 292, -228, 10, 57, -5, 0, 1, 1, -120, 1191, -2296, -1191, 7128, -3572, -6648, 7140, 1216, -4749, 1200, 1171, -600, 15, 120, -6, 0, 1
OFFSET
0,8
COMMENTS
Row sums are one.
FORMULA
T(n, k) = coefficients of the expansion of p(x, n), where p(x,n) = (1+x-x^3)^(n + 1)*Sum_{j >= 0} (j+1)^n*(-x + x^3)^j.
T(n, 1) = (-1)*A000295(n) for n >= 2.
EXAMPLE
Irregular triangle begins as:
1;
1;
1, -1, 0, 1;
1, -4, 1, 4, -2, 0, 1;
1, -11, 11, 10, -22, 3, 11, -3, 0, 1;
1, -26, 66, 0, -131, 78, 62, -78, 6, 26, -4, 0, 1;
1, -57, 302, -245, -547, 905, 74, -901, 342, 292, -228, 10, 57, -5, 0, 1;
MATHEMATICA
p[x_, n_] = (1+x-x^3)^(n+1)*Sum[(j+1)^n*(-x+x^3)^j, {j, 0, Infinity}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
PROG
(Sage)
def T(n, k): return ( (1+x-x^3)^(n+1)*sum((j+1)^n*(x^3-x)^j for j in (0..3*n+1)) ).series(x, 3*n+3).list()[k]
flatten([1]+[[T(n, k) for k in (0..3*n-3)] for n in (1..12)]) # G. C. Greubel, Jan 06 2022
CROSSREFS
KEYWORD
tabf,sign
AUTHOR
Roger L. Bagula, Feb 17 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 06 2022
STATUS
approved