login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product(p*(p+1)^(e-1)) - Product((p-1)*p^(e-1)), when n = Product(p^e), with p primes, and e their exponents.
5

%I #28 Oct 05 2023 04:08:16

%S 0,1,1,4,1,4,1,14,6,6,1,14,1,8,7,46,1,18,1,22,9,12,1,46,10,14,30,30,1,

%T 22,1,146,13,18,11,60,1,20,15,74,1,30,1,46,36,24,1,146,14,40,19,54,1,

%U 78,15,102,21,30,1,74,1,32,48,454,17,46,1,70,25,46,1,192,1,38,50,78,17,54,1,238,138,42,1,102,21

%N a(n) = Product(p*(p+1)^(e-1)) - Product((p-1)*p^(e-1)), when n = Product(p^e), with p primes, and e their exponents.

%C Möbius transform of A348507.

%H Antti Karttunen, <a href="/A348971/b348971.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = A003968(n) - A000010(n).

%F a(n) = Sum_{d|n} A008683(n/d) * A348507(d).

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = A104141 * (1/A005596 - 1) = 0.5088692487... . - _Amiram Eldar_, Oct 05 2023

%t f1[p_, e_] := p*(p + 1)^(e - 1); f2[p_, e_] := (p - 1)*p^(e - 1); a[1] = 0; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* _Amiram Eldar_, Nov 05 2021 *)

%o (PARI) A348971(n) = { my(f=factor(n),m1=1,m2=1,p); for(i=1, #f~, p = f[i, 1]; m1 *= p*(p+1)^(f[i, 2]-1); m2 *= (p-1)*p^(f[i, 2]-1)); (m1-m2); };

%o (PARI) A348971(n) = { my(f=factor(n),p); for (i=1, #f~, p = f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f)-eulerphi(n); }

%Y Cf. A000010, A003959, A003968, A008683, A300251, A348507, A348970.

%Y Cf. A005596, A104141.

%K nonn,easy,look

%O 1,4

%A _Antti Karttunen_, Nov 05 2021