The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A348763 Decimal expansion of Sum_{n>=1} ((-1)^(n+1)*n)/(n+1)^2. 0
 1, 2, 9, 3, 1, 9, 8, 5, 2, 8, 6, 4, 1, 6, 7, 9, 0, 8, 8, 1, 8, 9, 7, 5, 4, 6, 1, 8, 6, 4, 8, 3, 6, 0, 2, 6, 5, 3, 3, 9, 7, 4, 8, 1, 6, 2, 4, 3, 1, 4, 3, 9, 6, 4, 7, 4, 7, 0, 9, 9, 1, 0, 5, 1, 9, 1, 6, 1, 0, 1, 1, 3, 2, 3, 1, 9, 0, 5, 7, 2, 1, 3, 1, 0, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..84. Eric Weisstein's World of Mathematics, Dilogarithm Index entries for zeta function. FORMULA Equals Pi^2/12-log(2). Equals Sum_{k>=2} (zeta(k)-zeta(k+1))/2^k. - Amiram Eldar, Mar 20 2022 EXAMPLE 0.12931985286416790881897546186483602653397481624314396474709910519161011... MATHEMATICA RealDigits[Pi^2/12 - Log[2], 10, 100][[1]] (* Amiram Eldar, Nov 30 2021 *) PROG (SageMath) (pi^2/12-log(2)).n(digits=100) (PARI) -sumalt(n=1, (-1)^n*n/(n+1)^2) \\ Charles R Greathouse IV, Nov 01 2021 (PARI) Pi^2/12-log(2) \\ Charles R Greathouse IV, Nov 01 2021 (Python) from scipy.special import zeta from math import log int(''.join(n for n in list(str(zeta(2)/2-log(2)))[2:-2])) (Python) int(str(sum((-1)**(n+1)*n/(n+1)**2 for n in range(1, 5000000)))[2:-2]) CROSSREFS Cf. A006752, A072691, A111003, A153071, A175571, A181983, A300707. Sequence in context: A339203 A179451 A124918 * A011240 A021345 A011066 Adjacent sequences: A348760 A348761 A348762 * A348764 A348765 A348766 KEYWORD nonn,cons AUTHOR Dumitru Damian, Oct 31 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 07:13 EDT 2024. Contains 375059 sequences. (Running on oeis4.)