login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348763
Decimal expansion of Sum_{n>=1} ((-1)^(n+1)*n)/(n+1)^2.
0
1, 2, 9, 3, 1, 9, 8, 5, 2, 8, 6, 4, 1, 6, 7, 9, 0, 8, 8, 1, 8, 9, 7, 5, 4, 6, 1, 8, 6, 4, 8, 3, 6, 0, 2, 6, 5, 3, 3, 9, 7, 4, 8, 1, 6, 2, 4, 3, 1, 4, 3, 9, 6, 4, 7, 4, 7, 0, 9, 9, 1, 0, 5, 1, 9, 1, 6, 1, 0, 1, 1, 3, 2, 3, 1, 9, 0, 5, 7, 2, 1, 3, 1, 0, 9
OFFSET
0,2
LINKS
FORMULA
Equals Pi^2/12-log(2).
Equals Sum_{k>=2} (zeta(k)-zeta(k+1))/2^k. - Amiram Eldar, Mar 20 2022
EXAMPLE
0.12931985286416790881897546186483602653397481624314396474709910519161011...
MATHEMATICA
RealDigits[Pi^2/12 - Log[2], 10, 100][[1]] (* Amiram Eldar, Nov 30 2021 *)
PROG
(SageMath) (pi^2/12-log(2)).n(digits=100)
(PARI) -sumalt(n=1, (-1)^n*n/(n+1)^2) \\ Charles R Greathouse IV, Nov 01 2021
(PARI) Pi^2/12-log(2) \\ Charles R Greathouse IV, Nov 01 2021
(Python)
from scipy.special import zeta
from math import log
int(''.join(n for n in list(str(zeta(2)/2-log(2)))[2:-2]))
(Python)
int(str(sum((-1)**(n+1)*n/(n+1)**2 for n in range(1, 5000000)))[2:-2])
KEYWORD
nonn,cons
AUTHOR
Dumitru Damian, Oct 31 2021
STATUS
approved