OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Dilogarithm
FORMULA
Equals Pi^2/12-log(2).
Equals Sum_{k>=2} (zeta(k)-zeta(k+1))/2^k. - Amiram Eldar, Mar 20 2022
EXAMPLE
0.12931985286416790881897546186483602653397481624314396474709910519161011...
MATHEMATICA
RealDigits[Pi^2/12 - Log[2], 10, 100][[1]] (* Amiram Eldar, Nov 30 2021 *)
PROG
(SageMath) (pi^2/12-log(2)).n(digits=100)
(PARI) -sumalt(n=1, (-1)^n*n/(n+1)^2) \\ Charles R Greathouse IV, Nov 01 2021
(PARI) Pi^2/12-log(2) \\ Charles R Greathouse IV, Nov 01 2021
(Python)
from scipy.special import zeta
from math import log
int(''.join(n for n in list(str(zeta(2)/2-log(2)))[2:-2]))
(Python)
int(str(sum((-1)**(n+1)*n/(n+1)**2 for n in range(1, 5000000)))[2:-2])
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Dumitru Damian, Oct 31 2021
STATUS
approved