login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348762
a(n) = A000265((n-8)*(n+8)).
1
17, 9, 57, 5, 105, 33, 161, 3, 225, 65, 297, 21, 377, 105, 465, 1, 561, 153, 665, 45, 777, 209, 897, 15, 1025, 273, 1161, 77, 1305, 345, 1457, 3, 1617, 425, 1785, 117, 1961, 513, 2145, 35, 2337, 609, 2537, 165, 2745, 713, 2961, 3, 3185, 825, 3417, 221, 3657
OFFSET
9,1
COMMENTS
Shares 495 initial terms with A061049. First difference is A061049(504)=62 vs. a(504)=31.
FORMULA
a(n) = A000265(A098849(n-8)).
EXAMPLE
a( 9) = A000265(( 9-8)*( 9+8)) = A000265( 17) = 17,
a(10) = A000265((10-8)*(10+8)) = A000265( 36) = 9,
a(11) = A000265((11-8)*(11+8)) = A000265( 57) = 57,
a(12) = A000265((12-8)*(12+8)) = A000265( 80) = 5,
a(13) = A000265((13-8)*(13+8)) = A000265(105) = 105.
MATHEMATICA
a[n_] := (n - 8)*(n + 8)/2^IntegerExponent[(n - 8)*(n + 8), 2]; Array[a, 53, 9] (* Amiram Eldar, Nov 22 2021 *)
PROG
(Ruby) p (9..27).map { |n| x = (n-8)*(n+8); x /= 2 while x.even?; x }
(PARI) A000265(n) = n >> valuation(n, 2);
a(n) = A000265((n-8)*(n+8));
[a(n)|n<-[9..27]]
(Python)
def A348762(n):
a, b = divmod(n*n-64, 2)
while b == 0:
a, b = divmod(a, 2)
return 2*a+b # Chai Wah Wu, Dec 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Simon Strandgaard, Oct 31 2021
STATUS
approved