login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348503
a(n) = gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.
6
1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 15, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32
OFFSET
1,2
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 15 != 3*1 = a(8)*a(9).
FORMULA
a(n) = gcd(A000203(n), A034448(n)).
a(n) = gcd(A000203(n), A048146(n)) = gcd(A034448(n), A048146(n)).
a(n) = A000203(n) / A348504(n) = A034448(n) / A348505(n).
MATHEMATICA
f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (fct = FactorInteger[n]), Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
PROG
(PARI)
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
A348503(n) = gcd(sigma(n), A034448(n));
CROSSREFS
Differs from A344695 for the first time at n=72, where a(72) = 15, while A344695(72) = 3.
Differs from A348047 for the first time at n=27, where a(27) = 4, while A348047(27) = 8.
Sequence in context: A380087 A367991 A344695 * A348047 A348984 A323159
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 29 2021
STATUS
approved