login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.
6

%I #11 Feb 10 2022 19:14:02

%S 1,3,4,1,6,12,8,3,1,18,12,4,14,24,24,1,18,3,20,6,32,36,24,12,1,42,4,8,

%T 30,72,32,3,48,54,48,1,38,60,56,18,42,96,44,12,6,72,48,4,1,3,72,14,54,

%U 12,72,24,80,90,60,24,62,96,8,1,84,144,68,18,96,144,72,15,74,114,4,20,96,168,80,6,1,126,84,32

%N a(n) = gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

%C This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 15 != 3*1 = a(8)*a(9).

%H Antti Karttunen, <a href="/A348503/b348503.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = gcd(A000203(n), A034448(n)).

%F a(n) = gcd(A000203(n), A048146(n)) = gcd(A034448(n), A048146(n)).

%F a(n) = A000203(n) / A348504(n) = A034448(n) / A348505(n).

%t f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (fct = FactorInteger[n]), Times @@ f2 @@@ fct]; Array[a, 100] (* _Amiram Eldar_, Oct 29 2021 *)

%o (PARI)

%o A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448

%o A348503(n) = gcd(sigma(n), A034448(n));

%Y Cf. A000203, A034448, A048146, A348504, A348505.

%Y Differs from A344695 for the first time at n=72, where a(72) = 15, while A344695(72) = 3.

%Y Differs from A348047 for the first time at n=27, where a(27) = 4, while A348047(27) = 8.

%K nonn

%O 1,2

%A _Antti Karttunen_, Oct 29 2021