login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348498
a(n) = gcd(A003415(n), A347130(n)) / A003557(n), where A003415 is the arithmetic derivative and A347130 is its Dirichlet convolution with the identity function.
4
0, 1, 1, 1, 1, 5, 1, 3, 1, 7, 1, 8, 1, 9, 8, 2, 1, 7, 1, 12, 10, 13, 1, 11, 1, 15, 3, 16, 1, 31, 1, 5, 14, 19, 12, 5, 1, 21, 16, 17, 1, 41, 1, 24, 13, 25, 1, 14, 1, 9, 20, 28, 1, 9, 16, 23, 22, 31, 1, 46, 1, 33, 17, 3, 18, 61, 1, 36, 26, 59, 1, 13, 1, 39, 11, 40, 18, 71, 1, 22, 2, 43, 1, 62, 22, 45, 32, 35, 1, 41
OFFSET
1,6
LINKS
FORMULA
a(n) = A348497(n) / A003557(n).
a(n) = gcd(A342001(n), A347129(n)).
MATHEMATICA
f[n_] := If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Table[GCD[f[n], DivisorSum[n, # f[n/#] &]]*Apply[Times, FactorInteger[n][[All, 1]]]/n, {n, 90}] (* Michael De Vlieger, Oct 25 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A347130(n) = sumdiv(n, d, d*A003415(n/d));
A348498(n) = (gcd(A003415(n), A347130(n))/A003557(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 23 2021
STATUS
approved