login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A329374
a(1) = 0; for n > 1, a(n) = A000265(A329372(n)), where A329372 is Dirichlet convolution of the identity function with A156552.
3
0, 1, 1, 5, 1, 3, 1, 17, 3, 11, 1, 11, 1, 5, 1, 49, 1, 61, 1, 39, 7, 19, 1, 33, 1, 71, 25, 17, 1, 19, 1, 129, 13, 137, 11, 209, 1, 133, 47, 115, 1, 1, 1, 63, 37, 131, 1, 89, 5, 159, 89, 227, 1, 15, 5, 49, 85, 1039, 1, 63, 1, 129, 31, 321, 35, 29, 1, 429, 83, 25, 1, 605, 1, 4115, 111, 409, 15, 101, 1, 307, 45, 8213, 1, 13, 65, 8203, 655, 179, 1, 335, 25
OFFSET
1,4
FORMULA
a(1) = 0; and for n > 1, a(n) = A000265(A329372(n)).
PROG
(PARI)
A000265(n) = (n/2^valuation(n, 2));
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
A297167(n) = if(1==n, 0, (A061395(n) + (bigomega(n)-omega(n)) - 1));
A297112(n) = if(1==n, 0, 2^A297167(n));
A329372(n) = sumdiv(n, d, sigma(n/d)*A297112(d));
A329374(n) = if(1==n, 0, A000265(A329372(n)));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 12 2019
STATUS
approved