login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055515
a(n) = (2^n - 1)/product(2^p - 1) where the product is over all distinct primes p that divide n.
1
1, 1, 1, 5, 1, 3, 1, 85, 73, 11, 1, 195, 1, 43, 151, 21845, 1, 12483, 1, 11275, 2359, 683, 1, 798915, 1082401, 2731, 19173961, 704555, 1, 1649373, 1, 1431655765, 599479, 43691, 8727391, 3272356035, 1, 174763, 9588151, 11822705675, 1, 1649061309, 1
OFFSET
1,4
LINKS
FORMULA
For p prime, a(p) = 1. - Michel Marcus, May 18 2014
For p prime, a(p^2) = A051156(n). - Michel Marcus, May 18 2014
EXAMPLE
a(12) = (2^12 -1)/((2^2 -1) (2^3 -1)) = 195.
PROG
(PARI) a(n) = my(f = factor(n)); (2^n-1)/prod(i=1, #f~, 2^f[i, 1] -1); \\ Michel Marcus, May 18 2014
CROSSREFS
Cf. A055977.
Sequence in context: A329374 A115638 A342375 * A363437 A338096 A215010
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Jul 03 2000
STATUS
approved