login
A055515
a(n) = (2^n - 1)/product(2^p - 1) where the product is over all distinct primes p that divide n.
1
1, 1, 1, 5, 1, 3, 1, 85, 73, 11, 1, 195, 1, 43, 151, 21845, 1, 12483, 1, 11275, 2359, 683, 1, 798915, 1082401, 2731, 19173961, 704555, 1, 1649373, 1, 1431655765, 599479, 43691, 8727391, 3272356035, 1, 174763, 9588151, 11822705675, 1, 1649061309, 1
OFFSET
1,4
LINKS
FORMULA
For p prime, a(p) = 1. - Michel Marcus, May 18 2014
For p prime, a(p^2) = A051156(n). - Michel Marcus, May 18 2014
EXAMPLE
a(12) = (2^12 -1)/((2^2 -1) (2^3 -1)) = 195.
PROG
(PARI) a(n) = my(f = factor(n)); (2^n-1)/prod(i=1, #f~, 2^f[i, 1] -1); \\ Michel Marcus, May 18 2014
CROSSREFS
Cf. A055977.
Sequence in context: A329374 A115638 A342375 * A363437 A338096 A215010
KEYWORD
easy,nonn,changed
AUTHOR
Leroy Quet, Jul 03 2000
STATUS
approved