login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A329371
Dirichlet convolution of the identity function with A246277.
3
0, 1, 1, 4, 1, 8, 1, 12, 5, 12, 1, 28, 1, 16, 11, 32, 1, 37, 1, 44, 15, 24, 1, 80, 7, 28, 19, 60, 1, 82, 1, 80, 21, 36, 15, 128, 1, 40, 27, 128, 1, 114, 1, 92, 49, 48, 1, 208, 9, 89, 33, 108, 1, 146, 21, 176, 39, 60, 1, 284, 1, 64, 69, 192, 25, 174, 1, 140, 45, 170, 1, 364, 1, 76, 70, 156, 21, 210, 1, 336, 65, 84, 1, 396, 33, 88, 55, 272, 1, 368, 25, 188, 63
OFFSET
1,4
FORMULA
a(n) = Sum_{d|n} d * A246277(n/d).
PROG
(PARI)
A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f)/2);
A329371(n) = sumdiv(n, d, (n/d)*A246277(d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 12 2019
STATUS
approved