login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348494
a(n) = A348492(n) / A003557(n), where A348492 is the GCD of the arithmetic derivative (A003415) and Pillai's arithmetical function (A018804).
7
1, 1, 1, 2, 1, 5, 1, 1, 1, 1, 1, 4, 1, 3, 1, 2, 1, 7, 1, 12, 5, 1, 1, 1, 1, 15, 3, 4, 1, 1, 1, 1, 7, 1, 3, 2, 1, 3, 1, 1, 1, 1, 1, 12, 1, 5, 1, 2, 1, 3, 5, 4, 1, 9, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 9, 1, 1, 12, 1, 1, 1, 1, 1, 3, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2, 11, 15, 1, 35, 1, 1, 5, 12, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,4
FORMULA
a(n) = gcd(A342001(n), A347128(n)).
a(n) = A348492(n) / A003557(n), where A348492(n) = gcd(A003415(n), A018804(n)).
MATHEMATICA
Array[GCD[Total@ GCD[#1, Range[#1]], #1 Total[#2/#1 & @@@ #2]]/Apply[Times, Map[#1^(#2 - 1) & @@ # &, #2]] & @@ {#, FactorInteger[#]} &, 105] (* Michael De Vlieger, Oct 21 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003557(n) = (n/factorback(factorint(n)[, 1]));
A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
A348492(n) = gcd(A003415(n), A018804(n));
A348494(n) = (A348492(n)/A003557(n));
CROSSREFS
Cf. also A348496.
Sequence in context: A078036 A369865 A175178 * A256541 A342919 A066421
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 21 2021
STATUS
approved