login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A348492(n) / A003557(n), where A348492 is the GCD of the arithmetic derivative (A003415) and Pillai's arithmetical function (A018804).
7

%I #19 Nov 13 2021 22:33:53

%S 1,1,1,2,1,5,1,1,1,1,1,4,1,3,1,2,1,7,1,12,5,1,1,1,1,15,3,4,1,1,1,1,7,

%T 1,3,2,1,3,1,1,1,1,1,12,1,5,1,2,1,3,5,4,1,9,1,1,1,1,1,2,1,3,1,2,9,1,1,

%U 12,1,1,1,1,1,3,1,4,3,1,1,2,1,1,1,2,11,15,1,35,1,1,5,12,1,1,3,1,1,1,1,2,1,1,1,1,1

%N a(n) = A348492(n) / A003557(n), where A348492 is the GCD of the arithmetic derivative (A003415) and Pillai's arithmetical function (A018804).

%H Antti Karttunen, <a href="/A348494/b348494.txt">Table of n, a(n) for n = 1..10000</a>

%H Antti Karttunen, <a href="/A348494/a348494.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F a(n) = gcd(A342001(n), A347128(n)).

%F a(n) = A348492(n) / A003557(n), where A348492(n) = gcd(A003415(n), A018804(n)).

%t Array[GCD[Total@ GCD[#1, Range[#1]], #1 Total[#2/#1 & @@@ #2]]/Apply[Times, Map[#1^(#2 - 1) & @@ # &, #2]] & @@ {#, FactorInteger[#]} &, 105] (* _Michael De Vlieger_, Oct 21 2021 *)

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A003557(n) = (n/factorback(factorint(n)[, 1]));

%o A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804

%o A348492(n) = gcd(A003415(n), A018804(n));

%o A348494(n) = (A348492(n)/A003557(n));

%Y Cf. A003415, A003557, A018804, A342001, A347128, A348492, A348500 [= a(A276086(n))].

%Y Cf. also A348496.

%K nonn

%O 1,4

%A _Antti Karttunen_, Oct 21 2021