login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348427
Composite k for which sigma(k) is divisible by the sum of the arithmetic derivatives of the divisors of k.
0
10, 33, 55, 145, 161, 165, 253, 322, 551, 649, 805, 1079, 1081, 1121, 1441, 1501, 1513, 1633, 1653, 1711, 1771, 2353, 2755, 3237, 3401, 3403, 3713, 3841, 4321, 4669, 4897, 5251, 5313, 5395, 5633, 5671, 6049, 6061, 6319, 6913, 7201, 7801, 8201, 8265, 8471, 10291
OFFSET
1,1
COMMENTS
Only composite numbers are considered because if p is prime then the sigma(p) = p + 1 is divided by 1' + p' = 0 + 1 = 1 and sigma(p) is divisible of 1.
EXAMPLE
10 is a term because sigma(10) = 1 + 2 + 5 + 10 = 18 is divisible by 1' + 2' + 5' + 10' = 0 + 1 + 1 + 7 = 9 = A319684(10).
33 is a term because sigma(33) = 1 + 3 + 11 + 33 = 48 is divisible by 1' + 3' + 11' + 33' = 0 + 1 + 1 + 14 = 16 = A319684(33).
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); s[n_] := DivisorSum[n, d[#] &]; Select[Range[10000], CompositeQ[#] && Divisible[DivisorSigma[1, #], s[#]] &] (* Amiram Eldar, Oct 18 2021 *)
PROG
(Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2]/Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [k:k in [2..10300]|not IsPrime(k) and DivisorSigma(1, k) mod &+[Floor(f(d)): d in Divisors(k)|d ne 1] eq 0];
(PARI) ad(n) = if (n<1, 0, my(f = factor(n)); n*sum(k=1, #f~, f[k, 2]/f[k, 1])); \\ A003415
isok(k) = (k>1) && !isprime(k) && !(sigma(k) % sumdiv(k, d, ad(d))); \\ Michel Marcus, Oct 19 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Oct 18 2021
STATUS
approved