login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065149
Composite numbers m such that phi(m)*sigma(m) is divisible by m-1.
1
10, 33, 65, 136, 145, 261, 385, 451, 897, 946, 1281, 1441, 1665, 1729, 2241, 2353, 3585, 5185, 6721, 7201, 8380, 8911, 8961, 11521, 11782, 12673, 12801, 17101, 18241, 20737, 25201, 26625, 26677, 26937, 29697, 29953, 30721, 30889, 32896
OFFSET
1,1
LINKS
FORMULA
(A000010(m)*A000203(m)) mod (m-1) = 0, m is composite.
EXAMPLE
m=136, phi(136)=64, sigma(136)=270, product=17280, quotient=128; for primes the formula holds.
MAPLE
with(numtheory): select(m->modp(phi(m)*sigma(m), m-1)=0 and not isprime(m), [$2..40000]); # Muniru A Asiru, Jun 18 2018
MATHEMATICA
Do[s=EulerPhi[n]*DivisorSigma[1, n]; If[IntegerQ[s/(n-1)]&&!PrimeQ[n], Print[n]], {n, 1, 100000}]
PROG
(PARI) { n=0; for (m=2, 10^9, s=eulerphi(m)*sigma(m); if (s%(m-1) == 0 && !isprime(m), write("b065149.txt", n++, " ", m); if (n==500, return)) ) } \\ Harry J. Smith, Oct 12 2009
(GAP) Filtered([2..40000], m->Phi(m)*Sigma(m) mod (m-1)=0 and not IsPrime(m)); # Muniru A Asiru, Jun 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 18 2001
EXTENSIONS
Offset changed from 0 to 1 by Harry J. Smith, Oct 12 2009
STATUS
approved