login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367031
G.f. satisfies A(x) = 1 + x*A(x)^2 - x^2*A(x)^4.
1
1, 1, 1, -1, -10, -33, -55, 65, 842, 3230, 6137, -6631, -102166, -421705, -864225, 795615, 14526042, 63072042, 136736102, -102140350, -2256842380, -10210904245, -23195817445, 13298317815, 371005984450, 1740942920122, 4120912606657, -1666840127743
OFFSET
0,5
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n,k) * binomial(2*n-k,n-2*k) / (n+k+1).
PROG
(PARI) a(n) = sum(k=0, n\2, (-1)^k*binomial(2*n, k)*binomial(2*n-k, n-2*k)/(n+k+1));
CROSSREFS
Cf. A006605.
Sequence in context: A255533 A067878 A067877 * A348427 A063160 A065149
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 02 2023
STATUS
approved