Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:46:26
%S 10,33,55,145,161,165,253,322,551,649,805,1079,1081,1121,1441,1501,
%T 1513,1633,1653,1711,1771,2353,2755,3237,3401,3403,3713,3841,4321,
%U 4669,4897,5251,5313,5395,5633,5671,6049,6061,6319,6913,7201,7801,8201,8265,8471,10291
%N Composite k for which sigma(k) is divisible by the sum of the arithmetic derivatives of the divisors of k.
%C Only composite numbers are considered because if p is prime then the sigma(p) = p + 1 is divided by 1' + p' = 0 + 1 = 1 and sigma(p) is divisible of 1.
%e 10 is a term because sigma(10) = 1 + 2 + 5 + 10 = 18 is divisible by 1' + 2' + 5' + 10' = 0 + 1 + 1 + 7 = 9 = A319684(10).
%e 33 is a term because sigma(33) = 1 + 3 + 11 + 33 = 48 is divisible by 1' + 3' + 11' + 33' = 0 + 1 + 1 + 14 = 16 = A319684(33).
%t d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); s[n_] := DivisorSum[n, d[#] &]; Select[Range[10000], CompositeQ[#] && Divisible[DivisorSigma[1, #], s[#]] &] (* _Amiram Eldar_, Oct 18 2021 *)
%o (Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2]/Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [k:k in [2..10300]|not IsPrime(k) and DivisorSigma(1,k) mod &+[Floor(f(d)): d in Divisors(k)|d ne 1] eq 0];
%o (PARI) ad(n) = if (n<1, 0, my(f = factor(n)); n*sum(k=1, #f~, f[k, 2]/f[k, 1])); \\ A003415
%o isok(k) = (k>1) && !isprime(k) && !(sigma(k) % sumdiv(k, d, ad(d))); \\ _Michel Marcus_, Oct 19 2021
%Y Cf. A000203, A003415, A319684.
%K nonn
%O 1,1
%A _Marius A. Burtea_, Oct 18 2021