login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347874
Odd composites for which A342926(n) is even and A342926(2*n) is a multiple of 3.
4
45, 153, 261, 325, 369, 405, 441, 477, 801, 909, 925, 1017, 1233, 1341, 1377, 1521, 1525, 1557, 1573, 1773, 1825, 2097, 2205, 2313, 2349, 2401, 2421, 2425, 2529, 2637, 2725, 2853, 3177, 3249, 3321, 3501, 3609, 3645, 3757, 3825, 3925, 4041, 4149, 4293, 4477, 4525, 4581, 4689, 4825, 5013, 5121, 5337, 5445, 5553, 5725
OFFSET
1,1
COMMENTS
Numbers k for which A347871(k) = 0 and A347883(2*k) = 0.
This is not a subsequence of A228058. The terms that do not occur there: 441, 1521, 2401, 3249, 8649, 16641, 28561, 35721, etc., seem all to be squares. Terms of A228058 missing from this sequence are: 117, 245, 333, 425, 549, 605, 637, 657, 725, etc. (See A351574.)
MATHEMATICA
ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); f[n_] := ad[DivisorSigma[1, n]] - n; Select[Range[1, 5725, 2], CompositeQ[#] && EvenQ[f[#]] && Divisible[f[2*#], 3] &] (* Amiram Eldar, Sep 18 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A342926(n) = (A003415(sigma(n))-n);
isA347874(n) = ((n%2)&&!isprime(n)&&!(A342926(n)%2)&&!(A342926(2*n)%3));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 18 2021
STATUS
approved