login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A234336 Triangular numbers t such that both distances from t to two nearest squares are perfect squares. 1
0, 1, 45, 153, 325, 10440, 1385280, 2530125, 145462096, 253472356000, 896473314291600, 18598323060963360, 4923539323344237960, 27021247523935843321, 1779312917089890560241, 2355054824151326520405, 21328127890911040269960, 124797500891024855239125 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Triangular numbers in A234334.
Except a(1)=0, a(n) are triangular numbers t such that both t-x and y-t are perfect squares, where x and y are two nearest to k squares: x < t <= y.
The sequence of k's such that triangular(k) is in A234334 begins: 0, 1, 9, 17, 25, 144, 1664, 2249, 17056, 712000, ...
LINKS
EXAMPLE
Triangular(9) = 45 is in the sequence because both 45-36=9 and 49-45=4 are perfect squares, where 36 and 49 are the two squares nearest to 45.
PROG
(C)
#include <stdio.h>
#include <math.h>
typedef unsigned long long U64;
U64 isSquare(U64 a) {
U64 r = sqrt(a);
return r*r==a;
}
int main() {
for (U64 i=0; i<(1ULL<<32); ++i) {
U64 n = i*(i+1)/2, r = sqrt(n);
if (r*r==n && n) --r;
if (isSquare(n-r*r) && isSquare((r+1)*(r+1)-n))
printf("%llu, ", n);
}
return 0;
}
CROSSREFS
Sequence in context: A044758 A053743 A347874 * A173371 A288669 A305069
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Dec 23 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 21:25 EDT 2024. Contains 375759 sequences. (Running on oeis4.)