|
|
A234336
|
|
Triangular numbers t such that both distances from t to two nearest squares are perfect squares.
|
|
1
|
|
|
0, 1, 45, 153, 325, 10440, 1385280, 2530125, 145462096, 253472356000, 896473314291600, 18598323060963360, 4923539323344237960, 27021247523935843321, 1779312917089890560241, 2355054824151326520405, 21328127890911040269960, 124797500891024855239125
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Except a(1)=0, a(n) are triangular numbers t such that both t-x and y-t are perfect squares, where x and y are two nearest to k squares: x < t <= y.
The sequence of k's such that triangular(k) is in A234334 begins: 0, 1, 9, 17, 25, 144, 1664, 2249, 17056, 712000, ...
|
|
LINKS
|
|
|
EXAMPLE
|
Triangular(9) = 45 is in the sequence because both 45-36=9 and 49-45=4 are perfect squares, where 36 and 49 are the two squares nearest to 45.
|
|
PROG
|
(C)
#include <stdio.h>
#include <math.h>
typedef unsigned long long U64;
U64 isSquare(U64 a) {
U64 r = sqrt(a);
return r*r==a;
}
int main() {
for (U64 i=0; i<(1ULL<<32); ++i) {
U64 n = i*(i+1)/2, r = sqrt(n);
if (r*r==n && n) --r;
if (isSquare(n-r*r) && isSquare((r+1)*(r+1)-n))
printf("%llu, ", n);
}
return 0;
}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|