|
|
A234333
|
|
T(n,k) is the number of (n+1) X (k+1) 0..3 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 1 (constant-stress 1 X 1 tilings).
|
|
9
|
|
|
80, 432, 432, 2368, 3296, 2368, 13056, 25728, 25728, 13056, 71936, 203008, 287888, 203008, 71936, 397056, 1603680, 3271560, 3271560, 1603680, 397056, 2188288, 12713312, 37234216, 53812604, 37234216, 12713312, 2188288, 12079104, 100679584
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
80 432 2368 13056 71936 397056
432 3296 25728 203008 1603680 12713312
2368 25728 287888 3271560 37234216 425662432
13056 203008 3271560 53812604 886832036 14698619604
71936 1603680 37234216 886832036 21167182224 508700005648
397056 12713312 425662432 14698619604 508700005648 17748461638244
2188288 100679584 4858165384 243143542208 12196560180032 617580751794644
12079104 799588512 55631535036 4038567639984 293794019734704 21603778650646796
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..143
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 32*a(n-2) -48*a(n-4).
k=2: [order 11].
k=3: [order 48].
|
|
EXAMPLE
|
Some solutions for n=2, k=4:
2 0 1 2 3 0 0 0 2 3 0 2 1 1 0 0 0 1 3 3
2 1 1 1 1 2 1 0 3 3 2 3 3 2 2 1 0 0 1 2
2 2 1 2 1 2 2 0 2 3 0 2 1 1 0 2 0 1 1 1
|
|
CROSSREFS
|
Sequence in context: A045666 A045657 A273292 * A234326 A085774 A233353
Adjacent sequences: A234330 A234331 A234332 * A234334 A234335 A234336
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Dec 23 2013
|
|
STATUS
|
approved
|
|
|
|