login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd composites for which A342926(n) is even and A342926(2*n) is a multiple of 3.
4

%I #16 Feb 25 2022 17:02:42

%S 45,153,261,325,369,405,441,477,801,909,925,1017,1233,1341,1377,1521,

%T 1525,1557,1573,1773,1825,2097,2205,2313,2349,2401,2421,2425,2529,

%U 2637,2725,2853,3177,3249,3321,3501,3609,3645,3757,3825,3925,4041,4149,4293,4477,4525,4581,4689,4825,5013,5121,5337,5445,5553,5725

%N Odd composites for which A342926(n) is even and A342926(2*n) is a multiple of 3.

%C Numbers k for which A347871(k) = 0 and A347883(2*k) = 0.

%C This is not a subsequence of A228058. The terms that do not occur there: 441, 1521, 2401, 3249, 8649, 16641, 28561, 35721, etc., seem all to be squares. Terms of A228058 missing from this sequence are: 117, 245, 333, 425, 549, 605, 637, 657, 725, etc. (See A351574.)

%H Antti Karttunen, <a href="/A347874/b347874.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/O#opnseqs">Index entries for sequences where odd perfect numbers must occur, if they exist at all</a>

%t ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); f[n_] := ad[DivisorSigma[1, n]] - n; Select[Range[1, 5725, 2], CompositeQ[#] && EvenQ[f[#]] && Divisible[f[2*#], 3] &] (* _Amiram Eldar_, Sep 18 2021 *)

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A342926(n) = (A003415(sigma(n))-n);

%o isA347874(n) = ((n%2)&&!isprime(n)&&!(A342926(n)%2)&&!(A342926(2*n)%3));

%Y Cf. A000203, A003415, A228058, A342925, A342926, A347871, A347883, A351574.

%Y Intersection of A347872 and A351562.

%K nonn

%O 1,1

%A _Antti Karttunen_, Sep 18 2021