login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A346971
Smallest c which can be split into positive parts a and b with a+b=c, such that the divisors of a,b,c cover all numbers up to n.
2
2, 3, 4, 8, 10, 12, 24, 45, 54, 88, 120, 182, 182, 360, 540, 1326, 1326, 3990, 5040, 5040, 5040, 9282, 9282, 25200, 25200, 65208, 65208, 118800, 118800, 651456, 651456, 651456, 651456, 651456, 651456, 2314200, 2314200, 2314200, 2314200, 16365396, 16365396
OFFSET
2,1
COMMENTS
a(37)..a(40) <= 2314200 via 1062048 + 1252152 = 2314200. - David A. Corneth, Aug 11 2021
FORMULA
a(n) <= A003418(n) and a(n) <= a(n+1). - David A. Corneth, Aug 11 2021
a(n) >= (4*A003418(n))^(1/3). - Charles R Greathouse IV, Oct 14 2021
EXAMPLE
a(5) = 8, 3+5=8, divisors of 3, 5, and 8 are {1,3}, {1,5}, and {1,2,4,8}, which covers all of {1,2,3,4,5}.
a(9) = 45, 21+24=45, divisors of 21, 24, and 45 are {1,3,7,21}, {1,2,3,4,6,8,12,24}, and {1,3,5,9,15,45}, which covers all of {1,2,3,4,5,6,7,8,9}.
MATHEMATICA
a[1]=1; a[n_]:=(k=1; While[Length@Select[Union@*Flatten@*Divisors/@(Join[{k}, #]&/@Rest@IntegerPartitions[k, 2]), SubsetQ[#, Range@n]&]<1, k++]; k); Array[a, 16] (* Giorgos Kalogeropoulos, Aug 13 2021 *)
PROG
(Python)
from sympy import divisors
from itertools import count
def cond(a, b, c, n):
return set(divisors(a)+divisors(b)+divisors(c)) >= set(range(1, n+1))
def a(n):
if n == 1: return 1
for c in count(1):
for a in range(1, c//2+1):
if cond(a, c-a, c, n): return c
print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Aug 13 2021
(Python)
def A346971(n):
c, nlist = 1, list(range(1, n+1))
while True:
mlist = [m for m in nlist if c % m]
if len(mlist) == 0: return c
p = max(mlist)
for a in range(p, c, p):
for m in mlist:
if a % m and (c-a) % m:
break
else:
return c
c += 1 # Chai Wah Wu, Oct 13 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Steven M. Altschuld, Aug 09 2021
EXTENSIONS
a(16)-a(26) from Alois P. Heinz, Aug 09 2021
a(27)-a(36) from David A. Corneth, Aug 11 2021
a(37)-a(40) from Chai Wah Wu, Oct 13 2021
a(41)-a(42) from Chai Wah Wu, Oct 21 2021
STATUS
approved