login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346970
Smallest c which can be split into positive integers a,b with a+b=c, such that a*b*c is divisible by each of the first n primes.
3
2, 3, 5, 10, 21, 55, 182, 357, 1105, 2958, 16588, 51243, 106981, 608685, 3003455, 7497910, 52350909, 168539462, 1822961393, 3079378759
OFFSET
1,1
COMMENTS
From David A. Corneth, Aug 10 2021: (Start)
Let k be a candidate value for a(n) and let g = gcd(c, primorial(n)) = gcd(c, A002110(n)). Let p be the largest prime that primorial(n)/g is divisible by. Then at least one of a and b is divisible by p.
So we can check multiples m of p < k and see if m*(k-m)*k is divisible by primorial(n).
If that is the case then k can be written as a + b where 0 < a,b < k and a*b*k is divisible by primorial(n) and a(n) = k when each of 1..k-1 do not have that property. (End)
From Kevin P. Thompson, Jun 30 2022 and Sep 07 2022: (Start)
n a(n) = c a b a * b * c
---- ---------- ---------- ----------- ---------------
1 2 1 1 prime(1)#
2 3 1 2 prime(2)#
3 5 2 3 prime(3)#
4 10 3 7 prime(4)#
5 21 10 11 prime(5)#
6 55 13 42 prime(6)#
7 182 17 165 prime(7)#
8 357 110 247 prime(8)#
9 1105 231 874 prime(9)#
10 2958 1463 1495 prime(10)#
11 16588 1615 14973 2 * prime(11)#
12 51243 16835 34408 4 * prime(12)#
13 106981 49335 57646 prime(13)#
14 608685 81548 527137 2 * prime(14)#
15 3003455 595034 2408421 7 * prime(15)#
16 7497910 2741301 4756609 3 * prime(16)#
17 52350909 2975429 49375480 4 * prime(17)#
18 168539462 55318167 113221295 9 * prime(18)#
19 1822961393 223726938 1599234455 83 * prime(19)#
20 3079378759 256763535 2822615224 4 * prime(20)# (End)
a(21) <= 111610913771, a(22) <= 111610913771 both via (a, b, c) = (54966571731, 56644342040, 111610913771). a(24) <= 8163073396289 via (a, b, c) = (133445799584, 8029627596705, 8163073396289). - David A. Corneth, Sep 07 2022
FORMULA
A002110(n)^(1/3) < a(n) <= A002110(n). - David A. Corneth, Aug 10 2021
a(2k) <= Product_{i=1..k} p_2i, a(2k+1) <= Product_{i=0..k} p_{2i+1} where p_i is the i-th prime. - Chai Wah Wu, Oct 14 2021
a(n) >= (4*A002110(n))^(1/3), strengthening David's result above. This inequality is strict for n > 1. - Charles R Greathouse IV, Jun 30 2022
EXAMPLE
a(4) = 10 via 3+7=10 and 3*7*10 = 210 which is divisible by each of the first 4 primes, namely 2, 3, 5 and 7.
a(7) = 182 via 17+165=182. 17*165*182 = 510510 which is divisible by each of the first 7 primes, namely 2, 3, ..., 13, 17.
MATHEMATICA
Do[Monitor[k=1; While[!Or@@And@@@(IntegerQ/@(#/Prime@Range@n)&/@Times@@@(Join[{k}, #]&/@IntegerPartitions[k, {2}])), k++]; Print@k, k], {n, 20}] (* Giorgos Kalogeropoulos, Aug 16 2021 *)
PROG
(PARI) a(n) = { if(n <= 3, return(prime(n))); P = vecprod(primes(n)); for(i = sqrtnint(P, 3) + 1, oo, if(iscanforA(n, i), return(i) ) ) }
iscanforA(n, k) = { my(g = gcd(k, P), step); if(k^2*g < P, return(0)); step = hpf(P/g); forstep(i = step, k, step, if((i*(k-i)*k)%P == 0, return(1) ) ); 0 }
hpf(n) = my(f = factor(n)); f[#f~, 1] \\ David A. Corneth, Aug 10 2021
(Python)
from sympy import primorial, primefactors, gcd
def A346970(n):
c, ps = 2, primorial(n)
while True:
m = ps//gcd(ps, c)
if m == 1:
return c
p = max(primefactors(m))
for a in range(p, c, p):
if a*(c-a) % m == 0:
return c
c += 1 # Chai Wah Wu, Oct 13 2021
CROSSREFS
Sequence in context: A352879 A022861 A352818 * A001646 A103595 A293842
KEYWORD
nonn,more
AUTHOR
Steven M. Altschuld, Aug 09 2021
EXTENSIONS
a(12)-a(16) from David A. Corneth, Aug 10 2021
a(17)-a(18) from Kevin P. Thompson, Jun 30 2022
a(19)-a(20) from Kevin P. Thompson, Sep 07 2022
a(20) corrected by David A. Corneth, Sep 07 2022
STATUS
approved