login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061193
Number of digits in n-th even perfect number (A000396).
(Formerly N0213)
3
1, 2, 3, 4, 8, 10, 12, 19, 37, 54, 65, 77, 314, 366, 770, 1327, 1373, 1937, 2561, 2663, 5834, 5985, 6751, 12003, 13066, 13973, 26790, 51924, 66530, 79502, 130100, 455663, 517430, 757263, 841842, 1791864, 1819050, 4197919, 8107892, 12640858, 14471465, 15632458, 18304103, 19616714, 22370543
OFFSET
1,2
COMMENTS
The next known values following a(48) are 44677235, 46498850, and 49724095, but these may not be the next terms. [Updated by M. F. Hasler, Nov 28 2017, Ivan Panchenko, Apr 07 2018, Apr 17 2018, Amiram Eldar, Oct 16 2024]
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 19.
Martin Gardner, Mathematical Magic Show, Alfred A. Knopf, 1977, p. 165.
Paul Hoffman, Archimedes' Revenge, Penguin, 1988, p. 11.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Donald D. Spencer, Key Dates in Number Theory History, Camelot Pub. Co., 1995, p. 80.
LINKS
Ivan Panchenko, Table of n, a(n) for n = 1..48 [Updated by Ivan Panchenko, Apr 17 2018, Amiram Eldar, Oct 16 2024]
Chris K. Caldwell, Table of Known Mersenne Primes.
J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
H. J. Smith, Mersenne Primes. [broken link]
FORMULA
a(n) = ceiling((2*A000043(n)-1)*A007524), with A000043 = Mersenne prime exponents, A007524 = log_10(2). - M. F. Hasler, Nov 28 2017
MATHEMATICA
Table[n=MersennePrimeExponent@k; IntegerLength[2^(n-1)(2^n-1)], {k, 45}] (* Giorgos Kalogeropoulos, Sep 03 2020 *)
Array[IntegerLength@*PerfectNumber, 18] (* Giorgos Kalogeropoulos, Sep 03 2020 *)
PROG
(PARI) apply( p->(2*p-1)*log(2)\log(10)+1, A000043) \\ where A000043 is the vector of the known Mersenne primes. - M. F. Hasler, Nov 28 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane. This was in the 1973 "Handbook", but was then dropped from the database. Resubmitted by Lekraj Beedassy, May 30 2001.
EXTENSIONS
More terms from Harry J. Smith, Apr 16 2003
Entry revised by N. J. A. Sloane, Jun 10 2012
a(39) through a(45) from M. F. Hasler, Nov 28 2017
STATUS
approved