login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346392
a(n) is the number of proper divisors of n ending with the same digit as n.
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 1, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 0, 0, 3, 0, 1, 0, 0, 3, 1, 1, 0, 2, 1, 0, 0, 1, 0, 2
OFFSET
1,40
LINKS
FORMULA
For a prime p, a(p) = 1 if p has the final digit equal to 1, otherwise a(p) = 0.
a(n) = A330348(n) - 1. - Michel Marcus, Jul 19 2021
EXAMPLE
a(40) = 2 since there are 2 proper divisors of 40 ending with 0: 10 and 20.
MATHEMATICA
a[n_]:=Length[Drop[Select[Divisors[n], (Mod[#, 10]==Mod[n, 10]&)], -1]]; Array[a, 90]
PROG
(PARI) a(n) = my(x = n%10); sumdiv(n, d, if (d<n, d%10 == x)); \\ Michel Marcus, Jul 19 2021
(Python)
from sympy import divisors
def a(n): return sum(d%10 == n%10 for d in divisors(n)[:-1])
print([a(n) for n in range(1, 91)]) # Michael S. Branicky, Jul 31 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Jul 15 2021
STATUS
approved