login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262804
a(n) = 2*b(n), where b(n) is defined by the condition that Product_{d|n} (b(d) + 1) = 1, n > 1 and b(1) = 1.
1
2, -1, -1, 0, -1, 2, -1, 0, 0, 2, -1, 0, -1, 2, 2, 0, -1, 0, -1, 0, 2, 2, -1, 0, 0, 2, 0, 0, -1, -1, -1, 0, 2, 2, 2, 0, -1, 2, 2, 0, -1, -1, -1, 0, 0, 2, -1, 0, 0, 0, 2, 0, -1, 0, 2, 0, 2, 2, -1, 0, -1, 2, 0, 0, 2, -1, -1, 0, 2, -1, -1, 0, -1, 2, 0, 0, 2, -1
OFFSET
1,1
COMMENTS
We can see from the formula that:
Product_{d|n} (moebius(d)*(moebius(d) + 3) + 4) = 4^d(n), for n > 1, where moebius(n) and d(n) are A008683 and A000005 respectively.
It also can be proved that
Product_{d|n} ((moebius(d) - 3/2 + I*sqrt(7)/2)) = Product_{d|n} ((moebius(d) - 3/2 - I*sqrt(7)/2)) is integer iff n belongs to A048109, where I = sqrt(-1).
FORMULA
a(p) = -1 if p is prime.
a(n) = 2*moebius(n) if moebius(n) = 1;
a(n) = moebius(n) if moebius(n) != 1.
And in general:
a(n) = moebius(n)*(moebius(n) + 3)/2.
EXAMPLE
If p is prime, (b(p)+1)(b(1)+1) = 1 => b(p)+1 = 1/2 => b(p) = -1/2 => a(p) = 2*b(p) = -1.
For n=6, (1+b(1))(1+b(2))(1+b(3))(1+b(6)) = 1 => 2*(1/2)*(1/2)*(1+b(6)) = 1 => b(6) = 1 => a(6) = 2*b(6) = 2. - Example corrected by Antti Karttunen, Jul 25 2017
MAPLE
b:= proc(n) option remember; if n>1 then (1)/(mul((1+b(d)), d = numtheory:-divisors(n) minus {n}))-1 else 1; end if; end proc: b(1):= 1:a(i):=2*b(i): L:=seq(a(i), i=1..200);
MATHEMATICA
Table[MoebiusMu[n] (MoebiusMu[n] + 3) / 2, {n, 80}] (* Vincenzo Librandi, Jan 19 2016 *)
PROG
(PARI) a(n) = moebius(n)*(moebius(n)+3)/2; \\ Michel Marcus, Jan 19 2016
(Magma) [MoebiusMu(n)*(MoebiusMu(n)+3)/2: n in [1..100]]; // Vincenzo Librandi, Jan 19 2016
CROSSREFS
KEYWORD
sign
AUTHOR
Gevorg Hmayakyan, Jan 17 2016
STATUS
approved