login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346391
Number of permutations f of {1,...,n} with f(n) = n and f(n-1) > f(1) such that f(1)*f(2) + ... + f(n-1)*f(n) + f(n)*f(1) == 0 (mod n^2).
1
0, 0, 0, 2, 17, 16, 209, 3192
OFFSET
3,4
COMMENTS
Conjecture: a(n) > 0 for all n > 5.
EXAMPLE
a(6) = 2, and 2*4 + 4*1 + 1*3 + 3*5 + 5*6 + 6*2 = 3*5 + 5*1 + 1*2 + 2*4 + 4*6 + 6*3 = 2*6^2.
a(7) > 0 with 1*3 + 3*4 + 4*5 + 5*6 + 6*2 + 2*7 + 7*1 = 2*7^2.
a(8) > 0 with 1*5 + 5*3 + 3*6 + 6*4 + 4*7 + 7*2 + 2*8 + 8*1 = 2*8^2.
a(9) > 0 with 1*2 + 2*3 + 3*5 + 5*4 + 4*6 + 6*8 + 8*7 + 7*9 + 9*1 = 3*9^2.
a(10) > 0 with 1*2 + 2*3 + 3*6 + 6*8 + 8*4 + 4*9 + 9*7 + 7*5 + 5*10 + 10*1 = 3*10^2.
a(11) > 0 with 1*3 + 3*4 + 4*5 + 5*8 + 8*6 + 6*9 + 9*7 + 7*10 + 10*2 + 2*11 + 11*1 = 3*11^2.
MATHEMATICA
(* A program to compute a(7): *)
VV[i_]:=VV[i]=Part[Permutations[{1, 2, 3, 4, 5, 6}], i];
n=0; Do[If[VV[i][[1]]<VV[i][[6]]&&Mod[Sum[VV[i][[k]]*VV[i][[k+1]], {k, 1, 5}]+VV[i][[6]]*7+7*VV[i][[1]], 7^2]==0, n=n+1], {i, 1, 6!}]; Print[n]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Zhi-Wei Sun, Jul 15 2021
STATUS
approved