login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344236
Number of n-step walks from a universal vertex to the other on the diamond graph.
2
0, 1, 2, 5, 14, 33, 90, 221, 582, 1465, 3794, 9653, 24830, 63441, 162762, 416525, 1067574, 2733673, 7003970, 17938661, 45954542, 117709185, 301527354, 772364093, 1978473510, 5067929881, 12981823922, 33253543445, 85180839134, 218195012913, 558918369450
OFFSET
0,3
COMMENTS
a(n) is the number of n-step walks from vertex A to vertex C on the graph below.
B--C
| /|
|/ |
A--D
FORMULA
a(n) = a(n-1) + 4*a(n-2) + (-1)^n for n > 1.
a(n) = A344261(n-1) + 2*a(n-2) + 2*A344261(n-2) for n > 1.
a(n) = A344261(n) - (-1)^n.
a(n) = A006131(n) - A344261(n).
a(n) = (A006131(n) - (-1)^n)/2.
a(n) = ((sqrt(17)-1)/(4*sqrt(17)))*((1-sqrt(17))/2)^n + ((sqrt(17)+1)/(4*sqrt(17)))*((1+sqrt(17))/2)^n - (1/2)*(-1)^n.
G.f.: (2*x^2 + x)/(-4*x^3 - 5*x^2 + 1).
a(n) = 5*a(n-2) + 4*a(n-3) for n > 2. - Stefano Spezia, May 13 2021
EXAMPLE
Let A, B, C and D be the vertices of the diamond graph, where A and C are the universal vertices. Then, a(3) = 5 walks from A to C are: (A, B, A, C), (A, C, A, C), (A, C, B, C), (A, C, D, C), and (A, D, A, C).
MAPLE
f := proc(n) option remember; if n <= 2 then n; else 5*f(n - 2) + 4*f(n - 3); end if; end proc
MATHEMATICA
LinearRecurrence[{0, 5, 4}, {0, 1, 2}, 30]
PROG
(Python)
def A344236_list(n):
list = [0, 1, 2] + [0] * (n - 3)
for i in range(3, n):
list[i] = 5 * list[i - 2] + 4 * list[i - 3]
return list
print(A344236_list(31)) # M. Eren Kesim, Jul 19 2021
(PARI) my(p=Mod('x, 'x^2-'x-4)); a(n) = (vecsum(Vec(lift(p^n))) + n%2) >> 1; \\ Kevin Ryde, May 13 2021
CROSSREFS
Sequence in context: A090803 A018015 A080039 * A374699 A265226 A357835
KEYWORD
nonn,easy,walk
AUTHOR
M. Eren Kesim, May 12 2021
STATUS
approved