login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080039
a(n) = floor((1+sqrt(2))^n).
10
1, 2, 5, 14, 33, 82, 197, 478, 1153, 2786, 6725, 16238, 39201, 94642, 228485, 551614, 1331713, 3215042, 7761797, 18738638, 45239073, 109216786, 263672645, 636562078, 1536796801, 3710155682, 8957108165, 21624372014, 52205852193
OFFSET
0,2
COMMENTS
a(n) = P(n) - (1+(-1)^n)/2, where P(n) is the Pell sequence (A000129) with initial conditions 2, 2.
For n>0 a(n) is the maximum element in the continued fraction for P(n)*sqrt(2) where P=A000129 - Benoit Cloitre, Jun 19 2005
FORMULA
G.f.: (1-t^2+2*t^3)/(1-2*t-2*t^2+2*t^3+t^4).
From Hieronymus Fischer, Jan 02 2009: (Start)
The fractional part of (1+sqrt(2))^n equals (1+sqrt(2))^(-n), if n odd. For even n, the fractional part of (1+sqrt(2))^n is equal to 1-(1+sqrt(2))^(-n).
fract((1+sqrt(2))^n) = (1/2)*(1+(-1)^n)-(-1)^n*(1+sqrt(2))^(-n) = (1/2)*(1+(-1)^n)-(1-sqrt(2))^n.
See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x).
a(n) = (sqrt(2)+1)^n - (1/2) + (-1)^n*((sqrt(2)-1)^n - (1/2)) for n>0. (End)
MATHEMATICA
CoefficientList[Series[(1-t^2+2t^3)/(1-2t-2t^2+2t^3+t^4), {t, 0, 30}], t]
Floor[(1+Sqrt[2])^Range[0, 40]] (* or *) LinearRecurrence[{2, 2, -2, -1}, {1, 2, 5, 14}, 40] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(PARI) t='t+O('t^50); Vec((1-t^2+2*t^3)/(1-2*t-2*t^2+2*t^3+t^4)) \\ G. C. Greubel, Jul 05 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jan 21 2003
STATUS
approved