login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265226
Self-convolution of A257889.
2
1, 2, 5, 14, 34, 96, 261, 692, 1680, 4540, 12540, 34552, 92728, 251572, 662340, 1729628, 4261528, 11130160, 29802200, 80103640, 218398544, 595050400, 1621285648, 4411577744, 11776668772, 31899937136, 85998657296, 231056788736, 607876418544, 1615730650080, 4228062351360, 11047956392096, 27736466241312, 71915999814720, 188591683462784, 495344539985920, 1321221455067520, 3505058052234400
OFFSET
0,2
LINKS
FORMULA
Terms satisfy:
(1) a(n) = A257889(2*n) / A257889(n),
(2) a(n+1) = A257889(2*n+1) / A257889(n),
(3) a(n) = Sum_{k=0..n} A257889(n-k) * A257889(k),
for n>=0, where A(x) = G(x)^2 and G(x) = Sum_{n>=0} A257889(n)*x^n.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 34*x^4 + 96*x^5 + 261*x^6 + 692*x^7 + 1680*x^8 + 4540*x^9 + 12540*x^10 + 34552*x^11 + 92728*x^12 +...
where
sqrt(A(x)) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 28*x^5 + 70*x^6 + 170*x^7 + 340*x^8 + 960*x^9 + 2688*x^10 + 7308*x^11 + 18270*x^12 +...+ A257889(n)*x^n +...
Illustration of initial terms:
a(1) = A257889(2)/A257889(1) = 2/1 = 2;
a(2) = A257889(3)/A257889(1) = 5/1 = 5;
a(2) = A257889(4)/A257889(2) = 10/2 = 5;
a(3) = A257889(5)/A257889(2) = 28/2 = 14;
a(3) = A257889(6)/A257889(3) = 70/5 = 14;
a(4) = A257889(7)/A257889(3) = 170/5 = 34;
a(4) = A257889(8)/A257889(4) = 340/10 = 34; ...
PROG
(PARI) {a(n) = my(A=1+x); for(k=2, n, A = A + a(k\2) * polcoeff(A^2, (k+1)\2) * x^k +x*O(x^n) ); polcoeff(A^2, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1, 1]); for(k=2, n, A = concat(A, A[k\2+1]*Vec(Ser(A)^2)[(k+1)\2+1]) ); Vec(Ser(A)^2)[n+1]}
for(n=0, 40, print1(a(n), ", "))
(PARI) /* Generates N terms rather quickly: */
N=300; A=[1, 1]; for(k=2, N, A = concat(A, A[k\2+1]*Vec(Ser(A)^2)[(k+1)\2+1]) ); Vec(Ser(A)^2)
CROSSREFS
Cf. A257889.
Sequence in context: A080039 A344236 A374699 * A357835 A369591 A299164
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 15 2015
STATUS
approved